首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations.

Methods

46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test).

Results

MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p < 0.01).

Conclusions

In OSAS patients there is a Mitochondrial DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.  相似文献   

2.
The role of climate in driving selection of mtDNA as Homo sapiens migrated out of Africa into Eurasia remains controversial. We evaluated the role of mtDNA variation in resting metabolic rate (RMR) and total energy expenditure (TEE) among 294 older, community-dwelling African and European American adults from the Health, Aging and Body Composition Study. Common African haplogroups L0, L2 and L3 had significantly lower RMRs than European haplogroups H, JT and UK with haplogroup L1 RMR being intermediate to these groups. This study links mitochondrial haplogroups with ancestry-associated differences in metabolic rate and energy expenditure.  相似文献   

3.
鼠毛及脑线粒体DNA片段缺失与增龄的关系   总被引:10,自引:0,他引:10  
以聚合酶链反应(PCR)技术检测不同年龄Balb/c小鼠脑细胞线粒体DNA片段缺失与增龄的关系.发现老年鼠脑细胞线粒体3867bp片段缺失率为50%;而断奶鼠与青年鼠均无此缺失片段出现;用鼠毛为材料进行无损伤检测亦获类似的结果.有人认为线粒体DNA片段缺失率可作为生物衰老的一种生物学标志  相似文献   

4.
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.  相似文献   

5.
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.  相似文献   

6.
Summary Mitochondrial DNA (mtDNA) restriction endonuclease fragment patterns and patterns of mtDNA hybridized by mitochondrial gene probes were used to study phylogenetic relationships of seven Pennisetum species, including five P. americanum (pearl millet) ecotypes and a reference species from the distantly related genus, Panicum. The restriction patterns of the pearl millet ecotypes were uniform with the exception of the ecotype collected in Ethiopia. The probe hybridization method revealed more variability, with both the Rhodesian and Ethiopian ecotypes differing from the others and from each other. Considerable restriction pattern polymorphism was noted among different species of Pennisetum, and Panicum. Significant relationships were noted of Pennisetum polystachyon to P. pedicellatum and of P. purpureum to P. squamulatum using the restriction pattern method. In addition to those relationships, the hybridization method showed relationships of pearl millet to P. purpureum and to P. squamulatum. The relationships noted between species by the hybridization method agreed more closely to the cytological data than those indicated by the restriction pattern method. Therefore, the hybridization method appeared to be the preferred method for studying species relationships. The mitochondrial genome size of pearl millet was calculated to be 407 kb and the mitochondrial genome sizes of other Pennisetum species ranged from 341 to 486 kb.Florida Agricultural Experiment Station Journal Series No. 8485.  相似文献   

7.
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. l-Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of γ-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl2, BSO, or MnCl2 plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl2 or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).  相似文献   

8.
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.  相似文献   

9.
Dysregulation of Ca2+ has long been implicated to be important in cell injury. A Ca2+-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca2+ in MPT induction varies with circumstance. Ca2+ overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca2+ overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca2+ appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca2+ and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca2+ for inducing the MPT and cell death depends on the particular biologic setting.  相似文献   

10.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.  相似文献   

11.
During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains.  相似文献   

12.
Abundant evidence has been gathered to suggest that mitochondrial DNA (mtDNA) sustains many more mutations and greater oxidative damage than does nuclear DNA in human tissues. Uremic patients are subject to a state of enhanced oxidative stress due to excess production of oxidants and a defective antioxidant defense system. This study was conducted to investigate mtDNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia. Results showed that large-scale deletions between nucleotide position (np) 7,900 and 16,300 of mtDNA occurred at a high frequency in muscle of uremic patients. Among them, the 4,977-bp deletion (mtDNA4977) was the most frequent and most abundant large-scale mtDNA deletion in uremic skeletal muscle. The proportion of mtDNA4977 was found to correlate positively with the level of 8-hydroxy 2-deoxyguanosine (8-OHdG) in the total DNA of skeletal muscle (r=0.62, p<0.05). Using long-range PCR and DNA sequencing, we identified and characterized multiple deletions of mtDNA in skeletal muscle of 16 of 19 uremic patients examined. The 8,041-bp deletion, which occurred between np 8035 and 16,075, was flanked by a 5-bp direct repeat of 5-CCCAT-3. Some of the deletions were found in more than 1 patient. On the other hand, we found that the mean 8-OHdG/105 dG ratio in the total cellular DNA of muscle of uremic patients was significantly higher than that of the controls (182.7 ± 63.6 vs. 50.9 ± 21.5, p=0.05). In addition, the mean 8-OHdG/105 dG ratio in muscle mtDNA of uremic patients was significantly higher than that in nuclear DNA (344.0 ± 56.9 vs. 146.3 ± 95.8, p=0.001). Moreover, we found that the average content of lipid peroxides in mitochondrial membranes of skeletal muscle of uremic patients was significantly higher than that of age-matched healthy subjects (23.76 ± 6.06 vs. 7.67 ± 0.95 nmol/mg protein; p<0.05). The average content of protein carbonyls in the mitochondrial membranes prepared from uremic skeletal muscles was significantly higher than that in normal controls (24.90 ± 4.00 vs. 14.48 ± 1.13 nmol/mg protein; p<0.05). Taken together, these findings suggest that chronic uremia leads to mtDNA mutations together with enhanced oxidative damage to DNA, lipids, and proteins of mitochondria in skeletal muscle, which may contribute to the impairment of mitochondrial bioenergetic function and to skeletal myopathy commonly seen in uremic patients.  相似文献   

13.
A single mitochondrial network in the cell undergoes constant fission and fusion primarily depending on the local GTP gradients and the mitochondrial energetics. Here we overview the main properties and regulation of pro-fusion and pro-fission mitodynamins, i.e. dynamins-related GTPases responsible for mitochondrial shape-forming, such as pro-fusion mitofusins MFN1, MFN2, and the inner membrane-residing long OPA1 isoforms, and pro-fission mitodynamins FIS1, MFF, and DRP1 multimers required for scission. Notably, the OPA1 cleavage into non-functional short isoforms at a diminished ATP level (collapsed membrane potential) and the DRP1 recruitment upon phosphorylation by various kinases are overviewed. Possible responses of mitodynamins to the oxidative stress, hypoxia, and concomitant mtDNA mutations are also discussed. We hypothesize that the increased GTP formation within the Krebs cycle followed by the GTP export via the ADP/ATP carrier shift the balance between fission and fusion towards fusion by activating the GTPase domain of OPA1 located in the peripheral intermembrane space (PIMS). Since the protein milieu of PIMS is kept at the prevailing oxidized redox potential by the TOM, MIA40 and ALR/Erv1 import-redox trapping system, redox regulations shift the protein environment of PIMS to a more reduced state due to the higher substrate load and increased respiration. A higher cytochrome c turnover rate may prevent electron transfer from ALR/Erv1 to cytochrome c. Nevertheless, the putative links between the mitodynamin responses, mitochondrial morphology and the changes in the mitochondrial bioenergetics, superoxide production, and hypoxia are yet to be elucidated, including the precise basis for signaling by the mitochondrion-derived vesicles.  相似文献   

14.
Mitochondrial DNA depletion syndrome (MDS), a reduction of mitochondrial DNA copy number, often affects muscle or liver. Mutations in enzymes of deoxyribonucleotide metabolism give MDS, for example, the mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) genes. Sixteen TK2 and 22 dGK alterations are known. Their characteristics and symptoms are described. Levels of five key deoxynucleotide metabolizing enzymes in mouse tissues were measured. TK2 and dGK levels in muscles were 5- to 10-fold lower than other nonproliferating tissues and 100-fold lower compared to spleen. Each type of tissue apparently relies on de novo and salvage synthesis of DNA precursors to varying degrees.  相似文献   

15.
According to the free radical theory, aging can be considered as a progressive, inevitable process partially related to the accumulation of oxidative damage into biomolecules -- nucleic acids, lipids, proteins or carbohydrates -- due to an imbalance between prooxidants and antioxidants in favor of the former. More recently also the pathogenesis of several diseases has been linked to a condition of oxidative stress. In this review we focus our attention on the evidence of oxidative stress in aging brain, some of the most important neurodegenerative diseases -- Alzheimer's disease (AD), mild cognitive impairment (MCI), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) -- and in two common and highly disabling vascular pathologies--stroke and cardiac failure. Particular attention will be given to the current knowledge about the biomarkers of oxidative stress that can be possibly used to monitor their severity and outcome.  相似文献   

16.
As multiple sclerosis (MS) has long been known to be associated with Leber, hereditary optic neuropathy (LHON), a disease caused by mitochondrial (mtDNA) mutations, in this study we assessed possible involvement of mtDNA point mutation in MS patients. Fifty-two MS patients whose disease was confirmed with revised McDonald criteria and referred to Iranian Center of Neurological Research of Imam Khomeini hospital during 2006–2007 entered the study. Secondary mtDNA mutations, age, gender, clinical disability according to expanded disability status scale (EDSS), course of the disease, and presenting symptoms were the variables investigated in this study. DNA purification was performed by Diatom DNA Extraction Kit. Analysis of data was done by SPSS V11.5. The prevalent mutations with frequency of 19.2% were J, L, and T haplogroups. Haplotype A was more prevalent in patients with younger age of onset (P-value = 0.012) and high proportion of haplogroup H was associated with optic nerve involvement (P-value = 0.015). No motor symptoms were seen in haplogroup H patients. There is no significant relationship between duration of the disease and EDSS in different mutation of mtDNA.  相似文献   

17.
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.  相似文献   

18.
19.
Mitochondrial DNAs (mtDNAs) of 54 Tibetans residing at altitudes ranging from 3,000–4,500 m were amplified by polymerase chain reaction (PCR), examined by high-resolution restriction endonuclease analysis, and compared with those previously described in 10 other Asian and Siberian populations. This comparison revealed that more than 50% of Asian mtDNAs belong to a unique mtDNA lineage which is found only among Mongoloids, suggesting that this lineage most likely originated in Asia at an early stage of the human colonization of that continent. Within the Tibetan mtDNAs, sets of additional linked polymorphic sites defined seven minor lineages of related mtDNA haplotypes (haplogroups). The frequency and distribution of these haplogroups in modern Asian populations are supportive of previous genetic evidence that Tibetans, although located in southern Asia, share common ancestral origins with northern Mongoloid populations. This analysis of Tibetan mtDNAs also suggests that mtDNA mutations are unlikely to play a major role in the adaptation of Tibetans to high altitudes. © 1994 Wiley-Liss, Inc.  相似文献   

20.
One proposed mechanism for acute and chronic hepatic encephalopathy (HE) is a disturbance in cerebral energy metabolism. It also reviews the current status of this mechanism in both acute and chronic HE, as well as in other hyperammonemic disorders. It also reviews abnormalities in glycolysis, lactate metabolism, citric acid cycle, and oxidative phosphorylation as well as associated energy impairment. Additionally, the role of mitochondrial permeability transition (mPT), a recently established factor in the pathogenesis of HE and hyperammonemia, is emphasized. Energy failure appears to be an important pathogenetic component of both acute and chronic HE and a potential target for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号