首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

2.
IL-2 is well described as a cytokine with two markedly distinct functionalities: as a necessary signal during CD4(+) and CD8(+) T cell activation/expansion and as an essential cytokine for the maintenance of CD4(+)CD25(+)FoxP3(+) T cells (regulatory T (T(REG)) cells) during homeostasis. In this study we demonstrate for the first time that, compared with the use of IL-2 alone, a complex of IL-2 and anti-IL-2 Ab (IL-2 complex) enhances the effectiveness of a viral vaccine in a mouse model with known Ag specificity. IL-2 complex led to an increase in the number of Ag-specific effector/memory CD8(+) T cells, cytokine production, and CTL lysis following Ag-specific restimulation in a vaccination setting. Our results further demonstrate that this effect is temporary and declines over the course of a few days after the IL-2 complex treatment cycle. Moreover, in contrast to the use of IL-2 alone, IL-2 complex greatly increased the ratio of effector/memory CD8(+) T cells to T(REG) cells. This phenomenon can thus potentially be used in the enhancement of immune responses to vaccination.  相似文献   

3.
OX40 costimulates T cells, increases activated T cell longevity, and promotes memory acquisition. T cells activated in vivo with agonist anti-OX40 and ovalbumin have a unique pattern of survival and cell division compared to control cells, but are able to respond to recall Ag equally well. BrdU incorporation shows that early cellular division rates of the anti-OX40-treated and the control groups are similar. Nevertheless, more BrdU(+) Ag-specific T cells accumulate in lymphoid tissue upon anti-OX40 administration. Thus, OX40 ligation does not necessarily lead to increased cell cycle entry, but promotes the accumulation of dividing cells. However, CFSE staining shows that OX40 ligation allows cells to progress through more cellular division cycles, while control cells stall or die. Moreover, OX40 ligation leads to a proportional decrease in apoptotic Ag-specific T cells. Thus, OX40 ligation boosts immunity by promoting an increase in the number cell cycles completed, thereby increasing the life span of Ag-activated CD4 T cells.  相似文献   

4.
Latner DR  Kaech SM  Ahmed R 《Journal of virology》2004,78(20):10953-10959
Unlike naive CD8+ T cells, antigen-experienced memory CD8+ T cells persist over time due to their unique ability to homeostatically proliferate. It was hypothesized that memory cells might differentially regulate the expression of genes that control the cell cycle to facilitate homeostatic proliferation. To test this, the expression levels of 96 different cell cycle regulatory genes were compared between transgenic naive and memory CD8+ T cells that specifically recognize the GP33-41 epitope of lymphocytic choriomeningitis virus (LCMV). It was discovered that relative to naive cells, memory cells overexpress several important genes that control the transition between G(1) and S phase. Some of these genes include those encoding cyclins D3, D2, B1, C, and H, cyclin-dependent kinases (cdk's) 4 and 6, the cdk inhibitors p16, p15, and p18, and other genes involved in protein degradation and DNA replication. Importantly, these differences were observed both in total populations of LCMV-specific naive and memory CD8+ cells and in LCMV-specific CD8+ T-cell populations that were in the G(1) phase of the cell cycle only. In addition, the expression differences between naive and memory cells were exaggerated following antigenic stimulation. The fact that memory cells are precharged with several of the major factors that are necessary for the G(1)- to-S-phase transition suggests they may require a lower threshold of stimulation to enter the cell cycle.  相似文献   

5.
Costimulation of CD8 T cell responses by OX40   总被引:4,自引:0,他引:4  
The persistence of functional CD8 T cell responses is dependent on checkpoints established during priming. Although naive CD8 cells can proliferate with a short period of stimulation, CD4 help, inflammation, and/or high peptide affinity are necessary for the survival of CTL and for effective priming. Using OX40-deficient CD8 cells specific for a defined Ag, and agonist and antagonist OX40 reagents, we show that OX40/OX40 ligand interactions can determine the extent of expansion of CD8 T cells during responses to conventional protein Ag and can provide sufficient signals to confer CTL-mediated protection against tumor growth. OX40 signaling primarily functions to maintain CTL survival during the initial rounds of cell division after Ag encounter. Thus, OX40 is one of the costimulatory molecules that can contribute signals to regulate the accumulation of Ag-reactive CD8 cells during immune responses.  相似文献   

6.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

7.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

8.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

9.
A T cell costimulatory molecule, OX40, contributes to T cell expansion, survival, and cytokine production. Although several roles for OX40 in CD8(+) T cell responses to tumors and viral infection have been shown, the precise function of these signals in the generation of memory CD8(+) T cells remains to be elucidated. To address this, we examined the generation and maintenance of memory CD8(+) T cells during infection with Listeria monocytogenes in the presence and absence of OX40 signaling. We used the expression of killer cell lectin-like receptor G1 (KLRG1), a recently reported marker, to distinguish between short-lived effector and memory precursor effector T cells (MPECs). Although OX40 was dispensable for the generation of effector T cells in general, the lack of OX40 signals significantly reduced the number and proportion of KLRG1(low) MPECs, and, subsequently, markedly impaired the generation of memory CD8(+) T cells. Moreover, memory T cells that were generated in the absence of OX40 signals in a host animal did not show self-renewal in a second host, suggesting that OX40 is important for the maintenance of memory T cells. Additional experiments making use of an inhibitory mAb against the OX40 ligand demonstrated that OX40 signals are essential during priming, not only for the survival of KLRG1(low) MPECs, but also for their self-renewing ability, both of which contribute to the homeostasis of memory CD8(+) T cells.  相似文献   

10.
Studies in IFN-gamma-deficient mice suggest that the delivery of IFN-gamma to CD8(+) T cells early in virus infection programs their eventual contraction, thereby reducing the abundance of CD8(+) memory T cells. In this study, we show that such mice fail to completely eliminate virus infection and that, when evaluated without the confounding factor of persisting Ag, both CD4(+) and CD8(+) T cells undergo profound contraction when they are unable to receive IFN-gamma signals. Furthermore, the abundance of CD4(+) and CD8(+) memory cells that express the IFN-gamma receptor is approximately 100-fold higher than cells lacking this molecule. Thus, direct IFN-gamma signaling is not required for T cell contraction during virus infection, and it enhances, rather than suppresses, the development of virus-specific CD4(+) and CD8(+) T cell memory.  相似文献   

11.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

12.
There is now considerable evidence suggesting that CD8(+) T cells are able to generate effector but not functional memory T cells following pathogenic infections in the absence of CD4(+) T cells. We show that following transplantation of allogeneic skin, in the absence of CD4(+) T cells, CD8(+) T cells become activated, proliferate, and expand exclusively in the draining lymph nodes and are able to infiltrate and reject skin allografts. CD44(+)CD8(+) T cells isolated 100 days after transplantation rapidly produce IFN-gamma following restimulation with alloantigen in vitro. In vivo CD44(+)CD8(+) T cells rejected donor-type skin allografts more rapidly than naive CD8(+) T cells demonstrating the ability of these putative memory T cells to mount an effective recall response in vivo. These data form the first direct demonstration that CD8(+) T cells are able to generate memory as well as effector cells in response to alloantigen during rejection in the complete absence of CD4(+) T cells. These data have important implications for the design of therapies to combat rejection and serve to reinforce the view that CD8(+) T cell responses to allografts require manipulation in addition to CD4(+) T cell responses to completely prevent the rejection of foreign organ transplants.  相似文献   

13.
Recently, we reported that a CD4(+)CD3(-)CD11c(-) accessory cell provided OX40-dependent survival signals to follicular T cells. These accessory cells express both OX40 ligand and CD30 ligand, and the receptors, OX40 and CD30, are both expressed on Th2-primed CD4 T cells. OX40 and CD30 signals share common signaling pathways, suggesting that CD30 signals might substantially compensate in OX40-deficient mice. In this report we have dissected the signaling roles of CD30 alone and in combination with OX40. CD30-deficient mice showed an impaired capacity to sustain follicular germinal center responses, and recall memory Ab responses were substantially reduced. Deficiencies in OX40 and CD30 signals were additive; secondary Ab responses were ablated in double-deficient mice. Although the initial proliferation of OX40/CD30 double-knockout OTII transgenic T cells was comparable to that of their normal counterparts, they failed to survive in vivo, and this was associated with reduced T cell numbers associated with CD4(+)CD3(-) cells in B follicles. Finally, we show that OX40/CD30 double-knockout OTII transgenic T cells fail to survive compared with normal T cells when cocultured with CD4(+)CD3(-) cells in vitro.  相似文献   

14.
Mice deficient in OX40 or 4-1BB costimulatory pathways show defects in T cell recall responses, with predominant effects on CD4 vs CD8 T cells, respectively. However, OX40L can also stimulate CD8 T cells and 4-1BBL can influence CD4 T cells, raising the possibility of redundancy between the two TNFR family costimulators. To test this possibility, we generated mice deficient in both 4-1BBL and OX40L. In an adoptive transfer model, CD4 T cells expressed 4-1BB and OX40 sequentially in response to immunization, with little or no overlap in the timing of their expression. Under the same conditions, CD8 T cells expressed 4-1BB, but no detectable OX40. Thus, in vivo expression of 4-1BB and OX40 can be temporally and spatially segregated. In the absence of OX40L, there were decreased CD4 T cells late in the primary response and no detectable secondary expansion of adoptively transferred CD4 T cells under conditions in which primary expansion was unaffected. The 4-1BBL had a minor effect on the primary response of CD4 T cells in this model, but showed larger effects on the secondary response, although 4-1BBL(-/-) mice show less impairment in CD4 secondary responses than OX40L(-/-) mice. The 4-1BBL(-/-) and double knockout mice were similarly impaired in the CD8 T cell response, whereas OX40L(-/-) and double knockout mice were similarly impaired in the CD4 T cell response to both protein Ag and influenza virus. Thus, 4-1BB and OX40 act independently and nonredundantly to facilitate robust CD4 and CD8 recall responses.  相似文献   

15.
Although the adaptive immune system has a remarkable ability to mount rapid recall responses to previously encountered pathogens, the cellular and molecular signals necessary for memory CD8(+) T cell reactivation are poorly defined. IL-15 plays a critical role in memory CD8(+) T cell survival; however, whether IL-15 is also involved in memory CD8(+) T cell reactivation is presently unclear. Using artificial Ag-presenting surfaces prepared on cell-sized microspheres, we specifically addressed the role of IL-15 transpresentation on mouse CD8(+) T cell activation in the complete absence of additional stimulatory signals. In this study we demonstrate that transpresented IL-15 is significantly more effective than soluble IL-15 in augmenting anti-CD3epsilon-induced proliferation and effector molecule expression by CD8(+) T cells. Importantly, IL-15 transpresentation and TCR ligation by anti-CD3epsilon or peptide MHC complexes exhibited synergism in stimulating CD8(+) T cell responses. In agreement with previous studies, we found that transpresented IL-15 preferentially stimulated memory phenotype CD8(+) T cells; however, in pursuing this further, we found that central memory (T(CM)) and effector memory (T(EM)) CD8(+) T cells responded differentially to transpresented IL-15. T(CM) CD8(+) T cells undergo Ag-independent proliferation in response to transpresented IL-15 alone, whereas T(EM) CD8(+) T cells are relatively unresponsive to transpresented IL-15. Furthermore, upon Ag-specific stimulation, T(CM) CD8(+) T cell responses are enhanced by IL-15 transpresentation, whereas T(EM) CD8(+) T cell responses are only slightly affected, both in vitro and in vivo. Thus, our findings distinguish the role of IL-15 transpresentation in the stimulation of distinct memory CD8(+) T cell subsets, and they also have implications for ex vivo reactivation and expansion of Ag-experienced CD8(+) T cells for immunotherapeutic approaches.  相似文献   

16.
T cell-dependent autoimmune diseases are characterized by the expansion of T cell clones that recognize immunodominant epitopes on the target antigen. As a consequence, for a given autoimmune disorder, pathogenic T cell clones express T cell receptors with a limited number of variable regions that define antigenic specificity. Qa-1, a MHC class I-like molecule, presents peptides from the variable region of TCRs to Qa-1-restricted CD8+ T cells. The induction of Vß-specific CD8+ T cells has been harnessed in an immunotherapeutic strategy known as the “T cell vaccination” (TCV) that comprises the injection of activated and attenuated CD4+ T cell clones so as to induce protective CD8+ T cells. We hypothesized that Qa-1-restricted CD8+ regulatory T cells could also constitute a physiologic regulatory arm of lymphocyte responses upon expansion of endogenous CD4+ T cells, in the absence of deliberate exogenous T cell vaccination. We immunized mice with two types of antigenic challenges in order to sequentially expand antigen-specific endogenous CD4+ T cells with distinct antigenic specificities but characterized by a common Vß chain in their TCR. The first immunization was performed with a non-self antigen while the second challenge was performed with a myelin-derived peptide known to drive experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that regulatory Vß-specific Qa-1-restricted CD8+ T cells induced during the first endogenous CD4+ T cell responses are able to control the expansion of subsequently mobilized pathogenic autoreactive CD4+ T cells. In conclusion, apart from the immunotherapeutic TCV, Qa-1-restricted specialized CD8+ regulatory T cells can also be induced during endogenous CD4+ T cell responses. At variance with other regulatory T cell subsets, the action of these Qa-1-restricted T cells seems to be restricted to the immediate re-activation of CD4+ T cells.  相似文献   

17.
T cell-to-T cell Ag presentation is increasingly attracting attention. In this study, we demonstrated that active CD4+ T (aT) cells with uptake of OVA-pulsed dendritic cell-derived exosome (EXO(OVA)) express exosomal peptide/MHC class I and costimulatory molecules. These EXO(OVA)-uptaken (targeted) CD4+ aT cells can stimulate CD8+ T cell proliferation and differentiation into central memory CD8+ CTLs and induce more efficient in vivo antitumor immunity and long-term CD8+ T cell memory responses than OVA-pulsed dendritic cells. They can also counteract CD4+25+ regulatory T cell-mediated suppression of in vitro CD8+ T cell proliferation and in vivo CD8+ CTL responses and antitumor immunity. We further elucidate that the EXO(OVA)-uptaken (targeted)CD4+ aT cell's stimulatory effect is mediated via its IL-2 secretion and acquired exosomal CD80 costimulation and is specifically delivered to CD8+ T cells in vivo via acquired exosomal peptide/MHC class I complexes. Therefore, EXO-targeted active CD4+ T cell vaccine may represent a novel and highly effective vaccine strategy for inducing immune responses against not only tumors, but also other infectious diseases.  相似文献   

18.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

19.
Virus-specific T cells represent a hallmark of Ag-specific, adaptive immunity. However, some T cells also demonstrate innate functions, including non-Ag-specific IFN-gamma production in response to microbial products such as LPS or exposure to IL-12 and/or IL-18. In these studies we examined LPS-induced cytokine responses of CD8(+) T cells directly ex vivo. Following acute viral infection, 70-80% of virus-specific T cells will produce IFN-gamma after exposure to LPS-induced cytokines, and neutralization experiments indicate that this is mediated almost entirely through production of IL-12 and IL-18. Different combinations of these cytokines revealed that IL-12 decreases the threshold of T cell activation by IL-18, presenting a new perspective on IL-12/IL-18 synergy. Moreover, memory T cells demonstrate high IL-18R expression and respond effectively to the combination of IL-12 and IL-18, but cannot respond to IL-18 alone, even at high cytokine concentrations. This demonstrates that the synergy between IL-12 and IL-18 in triggering IFN-gamma production by memory T cells is not simply due to up-regulation of the surface receptor for IL-18, as shown previously with naive T cells. Together, these studies indicate how virus-specific T cells are able to bridge the gap between innate and adaptive immunity during unrelated microbial infections, while attempting to protect the host from cytokine-induced immunopathology and endotoxic shock.  相似文献   

20.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号