首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
New manganese(III) complexes of Hphox (2-(2′-hydroxyphenyl)-oxazoline) and HClphox (2-(5′-chloro-2′-hydroxyphenyl)-oxazoline) have been synthesised. The X-ray structures of [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2](H2O)2 and [Mn(Clphox)2(MeOH)2](ClO4) show the manganese(III) ions to be octahedrally coordinated with methanol or perchlorate at the axial coordination sites. The cyclic voltammograms of the complexes, with the exception of [Mn(phox)2(acac)] (Hacac=2,4-pentanedione), show an irreversible reduction wave of manganese(III) to manganese(II). After addition of an excess of 1-methylimidazole (1-Meim), the reduction process shifts towards lower potentials and becomes (quasi-) reversible, indicating that the presence of 1-Meim affects the catalytic efficiency of the complexes. The complexes catalyse the epoxidation of styrene by dihydrogen peroxide. The cumulative turnover numbers towards styrene oxide obtained after 15 min. vary from 16 for [Mn(Clphox)2(MeOH)2](ClO4) to 26 for [Mn(phox)2(acac)]. Ligand degradation appears to be the limiting factor for obtaining higher turnover numbers.  相似文献   

2.
The mononuclear manganese(III) complexes [C5H10NH2][MnL2] [L2−=a substituted N-(2-hydroxybenzyl)glycinate (hbg2−) viz. 3,5-dibromo- (3,5-Br-hbg2−), 3,5-dichloro- (3,5-Cl-hbg2−), 3-methyl-5-chloro- (3,5-Me,Cl-hbg2−), 5-bromo- (5-Br-hbg2−), 5-chloro- (5-Cl-hbg2−), 5-nitro- (5-NO2-hbg2−) or N-(5-nitro-2-hydroxybenzyl)sarcosine (5-NO2-hbs2−)] have been synthesised by reaction of the appropriate ligand with manganese(II) perchlorate under ambient conditions in a 2:1 molar ratio using piperidine as base. The structures of three of these complexes, [C5H10NH2][Mn(3,5-Cl-hbg)2] (2), [C5H10NH2][Mn(5-NO2-hbg)2] (6) and [C5H10NH2][Mn(5-NO2-hbs)2] (7) have been elucidated by single-crystal X-ray crystallography and each displays two similar, independent [MnL2] ions in the asymmetric unit linked via piperidinium cations through hydrogen bonding. The ligands co-ordinate in a facial tridentate fashion with the three donor atoms being the phenolate and carboxylate oxygens and the amine nitrogen. The geometry at the Mn centres is compressed rhombic octahedral consistent with a pseudo-Jahn–Teller compression along the Mn–O(phenolate) axis. Mean bond lengths are in the ranges 1.886–1.889 Å for the Mn–O(phenolate), 2.062–2.125 Å for the Mn–O(carboxylate) and 2.091–2.184 Å for the Mn–N(amine) distances. The magnetic susceptibility and electronic and IR spectroscopic data are discussed with reference to the crystal structures.  相似文献   

3.
A dinuclear Mn(II) di(μ-hydroxo) complex having hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (=TpiPr2) reacted with benzoic acid to yield a dinuclear Mn(II) tri(μ-carboxylato) complex, TpiPr2Mn-(μ-OBz)3-Mn(TpiPr2H). X-ray crystallography reveals the unsymmetrical coordination environments for the manganese centers. One of the two TpiPr2 ligands, which bound to the five-coordinated Mn center, is protonated by the action of the third carboxylic acid and the resulting non-Mn-binding N–H moiety forms an intramolecular hydrogen bond with the oxygen donor of a carboxylate ligand. Steric congestion in the bimetallic core results in the large separation of the manganese centers bridged by the syn-anti carboxylate ligand.  相似文献   

4.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

5.
Copper(II) complexes were synthesized and characterized by means of elemental analysis, IR and visible spectroscopies, EPR and electrochemistry, as well as X-ray structure crystallography. The group consists of discrete mononuclear units with the general formula [Cu(II)(Hbpa)2](A)2·nH2O, where Hbpa=(2-hydroxybenzyl-2-pyridylmethyl)amine and A=ClO4 −, n=2 (1), CH3COO, n=3 (2), NO3 −, n=2 (3) and SO4 2−, n=3 (4). The structures of the ligand Hbpa and complex 1 have been determined by X-ray crystallography. Complexes 1–4 have had their UV–Vis spectra measured in both MeCN and DMF. It was observed that the compounds interact with basic solvents, such that molecules coordinate to the metal in axial positions in which phenol oxygen atoms are coordinated in the protonated forms. The values were all less than 1000 M−1 cm−1. EPR measurements on powdered samples of 1–3 gave g/A values between 105 and 135 cm−1, typical for square planar coordination environments. Complex 4·3H2O exhibits a behaviour typical for tetrahedral coordination. The electrochemical behaviour for complexes 1 and 2 was studied showing irreversible redox waves for both compounds.  相似文献   

6.
A new dinuclear manganese(II)-azido complex: [Mn(2,2′-dpa)(N3)2]21 (2,2′-dpa = 2,2′-dipicolylamine) has been synthesized solvothermally. X-ray crystallography analysis reveals that it consists of two crystallographically independent dimeric manganese moieties; each manganese(II) atom is coordinated by one 2,2′-dipicolylamine, one terminal azido ligand, and double end-on bridging azido ligands, exhibiting a slightly distorted octahedral sphere. There are extensive short contacts among dimeric manganese moieties, which extend the structure into an interesting three-dimensional supramolecular array. Magnetic determination of 1 indicates that dominant ferromagnetic interaction and weak antiferromagnetic interaction, which are ascribed to the end-on azido bridges and the short contacts, respectively, co-exist in this complex.  相似文献   

7.
Copper(I)/(II) complexes with the ligand 2-aminoethyl(2-pyridylmethyl)1,2-ethanediamine (apme, abbreviated as PDT in the literature as well) were prepared and characterized. Crystal structures of the copper(I) complexes, [Cu2(apme)2]X2 (1, 2; X = ClO4, CF3SO3), showed that they are dinuclear, in contrast to the trigonal bipyramidal copper(II) complexes [Cu(apme)Cl]BPh4 (3) and [Cu(apme)(DMF)](BPh4)2 (4). 1 and 2 could be investigated in solution by NMR spectroscopy and 3 and 4 by cyclovoltammetry. From the results of these studies it is clear that in solution equilibria between the dinuclear complexes 1/2 and another species exist, most likely the monomeric [Cu(apme)CH3CN]+. Time-resolved UV/vis spectra at low temperatures allowed the spectroscopic detection of dioxygen adduct complexes as reactive intermediates during the oxidation of 1/2 with dioxygen that seem to play an important role in copper enzymes such as peptidylglycine--hydroxylating monooxygenase (PHM).  相似文献   

8.
The complex [Mn(mesalim)2Cl] (1), (Hmesalim = methyl salicylimidate) has been synthesized and fully characterized. The manganese(III) complex is formed by the reaction of the ligand Hmesalim with manganese(II) chloride. Complex 1 is mononuclear and crystallizes in the space group . Electrochemical studies were performed for complex 1, as well as for the related complexes [Mn(mesalim)2(OAc)(MeOH] · MeOH (2) and [Mn2(etsalim)4(Hetsalim)2](ClO4)2 (3), (Hetsalim = ethyl salicylimidate). The complexes display intricate oxidation-reduction behaviour, and coulometric analyses in combination with electrochemical analyses have been used to understand the electron transfer mechanisms occurring at the electrodes.  相似文献   

9.
One-pot reaction between MnCl2·4H2O, K2tcpd (tcpd2− = [C10N6]2− = (C[C(CN)2]3)2− = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion) and 2,2′-bipyrimidine (bpym = C8H6N4) in aqueous solution yields the new compound [Mn2(bpym)3(tcpd)2(H2O)2] (1). The molecular structure of 1 consists of a centrosymmetrical binuclear complex which includes unprecedented unidentate tcpd ligands with two bidentate and a bis-chelate bpym units. Examination of the intermolecular distances reveals that the dinuclear units are held together by hydrogen bonds involving coordinated water molecules and two nitrile groups of the tcpd ligand, giving rise to a 2D structure overall. Variable-temperature magnetic susceptibility data show the occurrence of slight antiferromagnetic coupling (J = −0.58 cm−1) between the Mn(II) ions through bridging bpym (the exchange Hamiltonian being defined as ).  相似文献   

10.
The X-ray structure is reported for the complex Cu2(medpco-2H)Cl2, (medpco = N,N′-bis-N,N-dimethylaminoethyl)pyridine-2,6-dicarboxamide 1-oxide. The complex is triclinic, , a=8.313(4), B=11.403(5), C=11.611(3) Å, =91.66(3), β=108.99(4), γ=109.60(3)° and Z=2. The deprotonated ligand (medpco-2H)2− acts as a binulceating ligand, producing an N-oxide-bridged complex. Each copper in Cu2(medpco-2H)Cl2 is five-coordinate, being coordinated by a bridging N-oxide oxygen, a deprotonated amide nitrogen, a tertiary amine nitrogen and two bridging chlorides. The complex does not exhibit significant magnetic interaction, and this may be the result of distortion of the bridging geometry from planarity. A range of other, apparently N-oxide-bridged, complexes of the type Cu2(medpco-2H)X2 is reported. The complex Cu2(medpco-2H)Br2·H2O is strongly antiferromagnetic, with magnetic data closely fitting the expected binuclear structure.  相似文献   

11.
The 1,3-oxazine complexes cis- and trans-[PtCl2{ C(R)OCH2CH2C}H22] (cis: R=CH3 (1a), CH2CH3 (2a), (CH3)3C (3a), C6H5 (4a); trans:R =CH3 (1b), C6H5 (4b)) were obtained in 51-71% yield by reaction in THF at 0 °C of the corresponding nitrile complexes cis- and trans-[PtCl2(NCR)2] with 2 equiv. of OCH2CH2CH2Cl, generated by deprotonation of 3-chloro-1-propanol with n-BuLi. The cationic nitrile complexes trans-[Pt(CF3)(NCR)(PPh3)2]BF4 (R=CH3, C6H5) react with 1 equiv, of OCH2CH2CH2Cl to give a mixture of products, including the corresponding oxazine derivatives trans-[Pt(CF3){ CH2}(PPh3)2]BF4 (5 and 6), the chloro complex trans- [Pt(CF3)Cl(PPh3)2] and free oxazine H2. For short reaction times (c. 5–15 min) the oxazine complexes 5 and 6 could be isolated in modest yield (37–49%) from the reaction mixtures and they could be separated from the corresponding chloro complex (yield 40%) by taking advantage of the higher solubility of the latter derivative in benzene. For longer reaction times (> 2 h), trans-[Pt(CF3)Cl(PPh3)2] was the only isolated product. Complex 6 was crystallographically characterized and it was found to contain also crystals of trans- [PtCl{ H2}(PPh3)2]BF4, which prevented a more detailed analysis of the bond lengths and angles within the metal coordination sphere. The 1,3-oxazine ring, which shows an overall planar arrangement, is characterized by high thermal values of the carbon atoms of the methylene groups indicative of disordering in this part of the molecule in agreement with fast dynamic ring processes suggested on the basis of 1H NMR spectra. It crystallizes in the trigonal space group P , with a=22.590(4), b=15.970(3) Å, γ=120°, V=7058(1) Å3 and Z=6. The structure was refined to R=0.059 for 3903 unique observed (I3σ(I)) reflections. A mechanism is proposed for the conversion of nitrile ligands to oxazines in Pt(II) complexes.  相似文献   

12.
The reaction of meso-tetrakis (4-dimethoxyphenyl) porphinatomanganese(II), MnTPOMeP, with TCNE (TCNE = tetracyanoethylene) leads to the formation of [MnTPOMeP]+ [TCNE] and [MnTPOMeP]+[OC(CN)C(CN)2]. The single-crystal X-ray structures of the latter as well as [Cu(bipy)2Cl]+ [OC(CN)C(CN)2] were determined. The former has a disordered [OC(CN)C(CN)2] bridging via C and O between a pair of MnIII sites, whereas the latter has an isolated [OC(CN)C(CN)2] unbound to CuII. The IR characterization for μ2-C,O bound [OC(CN)C(CN)2] is at 2219m and 2196s (νCN) cm−1 and at 1558s (νCO) cm−1 while for unbound [OC(CN)C(CN)2] it is at 2210m, 2203m, 2181m (νCN) cm−1 and at 1583s (νCO) cm−1.  相似文献   

13.
The first crystal and molecular structure of a transition metal complex containing 1,2-dithiocroconate (1,2-dtcr, dianion of 1,2-dimercaptocylopent-1-ene-3,4,5-trione), [Cu(bpca)(H2O)]2[Cu(1,2-dtcr)2]·2H2O (where bpca is the bis(2-pyrdidylcarbonyl)amide anion), has been determined by single crystal X-ray diffraction methods. The compound crystallizesin the monoclinic syste, space group P21/c, with a = 11.661(3), b = 20.255(6), c = 8.265(3) Å, ß = 107.26(2)° and Z = 2. The structure is formally built of [Cu(1,2-dtcr)2]2− and [Cu(bpca)(H2O)]+ ions and water of hydration. The copper atom of the anion is situated at a crystallographic inversion centre, bonded to four sulfur atoms in a planar, approximately square arrangement. In the cation the copper equatorial plane is formed by the three nitrogen atoms of the bpca ligand and a water oxygen atom. In addition there is a very weak axial bond to one of the sulfur atoms of a 1,2-dtcr ligand in the anion. Through these latter weak bonds each anion is connected to, and sandwiched between, two cations, resulting in neutral, trinuclear, centrosymmetric formula units. The triple-decker molecules are arranged in stacks along the crystallographic a-axis creating close contacts between the terminal copper atoms and bpca groups of the neighbouring molecules. This intermolecular interaction is, however, too weak to define the structure as a chain compound. The distance between adjacent copper atoms within the trinuclear unit is 4.189(1) Å, while the shortest intra-stack metal-metal separation between terminal copper atoms is 5.281(1) Å. Variable-temperature magnetic susceptibility measurements in the temperature r.2–140 K reveal that a Curie law is followed; with three non-interacting copper(II) ions in the formula unit.  相似文献   

14.
Reactions between 1,1′-dibenzyl-4,4′-bipyridinium(2+) (benzylviologen, BzV) chloride and cyanocuprates(I) gave two charge-transfer complexes having different colors: dark brown (BzV)3Cu9(CN)15·H2O and light brown (BzV)Cu(CN)3·2H2O. An X-ray crystal analysis of the former compound showed that nine crystallographically nonequivalent Cu atoms form three kinds of triad ---Cu---(CN)---Cu--- screws, which are linked by CN groups resulting in a unique three-dimensional network structure. Three of the nine Cu atoms have distorted tetrahedral (td) coordination geometries while the others have triangular plane (tp) geometries. Each screw consists of a (-tp-td-tp-)n array. There are three crystallographically nonequivalent viologen molecules. Certain CuCN moieties are located above a viologen ring or by the side of a viologen ring, with close interatomic contacts. These close contacts are characteristic of the charge-transfer complex and are responsible for the deep color of the complex.  相似文献   

15.
The Schiff base formed by condensation of 2,6-diacetylpyridine with S-benzyldithiocarbazate (H2SNNNS) behaves as a pentadentate ligand, forming a nickel(II) complex of empirical formula Ni(SNNNS)·H2O that is high-spin with a room-temperature magnetic moment of 2.93 B.M. Spectroscopic data indicate that the ligand coordinates with the nickel(II) ion via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The crystal and molecular structure of the nickel(II) complex was determined by X-ray crystallography. The complex crystallizes in the monoclinic system, space group C2/c, with a=15.849(2), b=18.830(2) and c=18.447(2) Å and =90°, β=102.179(6)°, γ=90° and Z=8. The crystal structure analysis shows that the complex is dinuclear, [Ni(SNNNS)]2·2H2O, in which the nickel(II) ions are bridged by the two pyridine nitrogen atoms of two fully deprotonated ligands. The NiN4S2 coordination geometry about each nickel(II) ion can be described as a distorted octahedron. The Schiff base and its nickel(II) complex were tested against four pathogenic bacteria (Bacillus subtilis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus and B. subtilis (wild type B29) and pathogenic fungi (Saccharomyces ceciricae, Candida albicans, Candida lypolitica and Aspergillus ochraceous) to assess their antimicrobial properties. Both compounds exhibit mild antibacterial and antifungal activities against these organisms. The anticancer properties of these compounds were also evaluated against Human T-lymphoblastic leukaemia cell lines. The Schiff base exhibits marked cytotoxicity against these cells, but its nickel(II) complex is inactive.  相似文献   

16.
From a mixture of cis- and trans-Ru(SH)2(dppm)2 (4), formed from reaction of H2S with trans-Ru(H)Cl(dppm)2 (2), a crystal of cis-4 has been isolated and its structure determined by X-ray analysis. The mercapto protons are located within the centrosymmetric structure, although the S-atoms are partially disordered (S–H1.06 Å). The thiolate complexes, trans-Ru(H)SR(dppm)2 (R=Ph, 5a; C6F5, 5b), have been isolated from reaction of trans-2 with 1 equiv. of RSH. trans-Ru(H)SH(dppm)2 (3) has been isolated from reaction of H2S with a mixture of cis- and trans-Ru(H)2(dppm)2 (1). An improved synthetic route for 1 is presented.  相似文献   

17.
The reaction of TiCl4 with Li2[(SiMe2)25-C5H3)2] in toluene at room temperature afforded a mixture of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] in a molar ratio of 1/2 after recrystallization. The complex trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] was hydrolyzed immediately by the addition of water to THF solutions to give trans-[(TiCl2)2(μ-O){(SiMe2)25-C5H3)2}] as a solid insoluble in all organic solvents, whereas hydrolysis of cis-[(TiCl3)2{(SiMe2)25-C5H3)2}] under different conditions led to the dinuclear μ-oxo complex cis-[(TiCl2)2)(μ-O){(SiMe2)25-C5H3)2}] and two oxo complexes of the same stoichiometry [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 as crystalline solids. Alkylation of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] with MgCIMe led respectively to the partially alkylated cis-[(TiMe2Cl)2{(SiMe2)25-C5H3)2}] and the totally alkylated trans-[(TiMe3)2{(SiMe2)25-C5H3)2}] compounds. The crystal and molecular structure of the tetranuclear oxo complex [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 was determined by X-ray diffraction.  相似文献   

18.
A series of cationic nickel complexes [(η3-methally)Ni(PP(O))]SbF6 (1–4) [PP(O) = Ph2P(CH2)P(O)Ph2 (dppmO) (1), Ph2P(CH2)2P(O)Ph2 (dppeO) (2), Ph2P(CH2)3P(O)Ph2 (dpppO) (3), pTol2P(CH2)P(O)pTol2 (dtolpmO) (4)] has been synthesized in good yields by treatment of [(η3-methally)NiBr]2 with biphosphine monoxides and AgSbF6. The ligands are coordinated in a bidentate way. Starting from [(η3-all)PdI]2 the cationic complexes [(η3-all)PP(O))]Y (8–14). [PP(O) = dppmO, dppeO, dpppO, dtolpmO;Y = BF4, SbF6, CF3SO3, pTolSO3] were synthesized in good yields. The coordination mode of the ligand is dependent on the backbone and the anion, revealing a monodentate coordination with dppmO for stronger coordinating anions. The intermediates [(η3-all)Pd(I)(PP(O)-κ1-P)] (5–7) [PP(O) = dppmO (5), dppeO (6), dtolpmO (7)] were isolated and characterized. Neutral methyl complexes [(Cl)(Me)Pd(PP(O))] (15–18). [PP(O) = dppmO (15), dppeO (16), dpppO (17), dtolpmO (18)] can easily be obtained in high yields starting from [(cod)PdCl2]. For dppmO two different routes are presented. The structure of [(Me)(Cl)Pd{;Ph2P(CH2-P(O)Ph22-P,O};] · CH2Cl2 (15) with the chlorine atom trans to phosphorus was determined by X-ray diffraction.  相似文献   

19.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

20.
The first 1:2 metal complexes of 2-(2′-pyridyl)quinoxaline (L) have been isolated. The physical and spectroscopic characteristics of the compounds [MCl2L2] (M = Ni, Cu, Cd) and [CuIL2](PF6) are described. The structure of the copper(I) complex has been determined by X-ray diffraction methods. Crystals are orthorhombic, space group Pcnb with A = 11.014(2), B = 12.886(2), C = 17.806(4) Å, V = 2527.1(9) Å3 and Z = 4. Refinement of the structure gave a final R factor of 0.046 (Rw = 0.041) for 814 unique reflections having I > 2.0σ(I). The ligand L acts as a bidentate chelate, the ligated atoms being the pyridine nitrogen and the nearest quinoxaline nitrogen. The structure of [CuL2]+ consists of a distorted tetrahedral arrangement around the copper(I) atom with Cu---N bond lengths of 2.023(6) and 2.059(5) Å and the N---Cu---N angle of the chelating ligand equal to 80.6(2)°. A monomeric trans pseudo-octahedral stereochemistry is assigned for the [MCl2L2] complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号