首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Koi S  Kato M 《Annals of botany》2007,99(6):1121-1130
BACKGROUND AND AIMS: In angiosperms, the shoot apical meristem produces a shoot system composed of stems, leaves and axillary buds. Podostemoideae, one of three subfamilies of the river-weed family Podostemaceae, have a unique 'shoot' that lacks a shoot apical meristem and is composed only of leaves. Tristichoideae have been interpreted to have a shoot apical meristem, although its branching pattern is uncertain. The shoot developmental pattern in Weddellinoideae has not been investigated with a focus on the meristem. Weddellinoideae are in a phylogenetically key position to reveal the process of shoot evolution in Podostemaceae. METHODS: The shoot development of Weddellina squamulosa, the sole species of Weddellinoideae, was investigated using scanning electron microscopy and semi-thin serial sections. KEY RESULTS: The shoot of W. squamulosa has a tunica-corpus-organized apical meristem. It is determinate and successively initiates a new branch extra-axillarily at the base of an immediately older branch, resulting in a sympodial, approximately plane branching pattern. Large scaly leaves initiate acropetally on the flanks of the apical meristem, as is usual in angiosperms, whereas small scaly leaves scattered on the stem initiate basipetally in association with the elongation of internodes. CONCLUSIONS: Weddellinoideae, like Tristichoideae, have a shoot apical meristem, leading to the hypothesis that the meristem was lost in Podostemoideae. The patterns of leaf formation in Podostemoideae and shoot branching in Weddellinoideae are similar in that these organs arise at the bases of older organs. This similarity leads to another hypothesis that the 'branch' in Weddellinoideae (and possibly Tristichoideae) and the 'leaf' in Podostemoideae are comparable, and that the shoot apical meristem disappeared in the early evolution of Podostemaceae.  相似文献   

3.
4.
New organs are initiated throughout the life span of higher plants. This process occurs at the shoot meristem, which is initiated during embryogenesis and is later responsible for generating the above-ground portion of the plant. The shoot meristem can be thought of as having two zones, a central zone containing meristematic cells in an undifferentiated state, and a surrounding peripheral zone where cells enter a specific developmental pathway toward a differentiated state. Recent advances have revealed several genes that specifically regulate meristem development inArabidopsis. However, extensive mutagenesis by several labs have identified only a handful, of loci that appear to specifically regulate shoot meristem development. We have undertaken an enhancer/suppressor mutagenesis of an existing meristem mutant (clv1) and have identified novel regulators of meristem development. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

5.
6.
Koi S  Kato M 《Annals of botany》2003,91(7):927-937
Root meristem structure and root branching in three species of Cladopus were investigated from developmental and anatomical perspectives. Cladopus fukiensis has a compressed bell-shaped meristem at the apex of a compressed subcylindrical root, while C. javanicus and perhaps C. nymanii, with a ribbon-like root, have a half lozenge-shaped ( subset as seen from above) meristem composed of an apical meristem of cubic cells and a marginal meristem of rectangular cells. The dorsiventrality of the meristem results in root dorsiventrality, and a marginal meristem contributes to the broadening of the root. Comparisons of meristem structure and root morphology suggest that the ribbon-like root of, e.g. C. javanicus, evolved towards the foliose root of Hydrobryum, sister to the genus Cladopus, by loss of an indeterminate apical meristem. The lateral root of C. javanicus initiates within the meristem of a parent root. The dorsal dermal layer and inner cells of the lateral-root meristem appear endogenously under the dermal layer of the parent root, while the ventral layer is derived exogenously from a ventral dermal layer continuous with the parent-root meristem. This mosaic pattern of exogenous and endogenous root formation differs from the truly exogenous formation seen in Hydrobryum and Zeylanidium. The dorsiventral mosaic origin of the root meristem may account for root cap asymmetry.  相似文献   

7.
Meristems may be determinate or indeterminate. In maize, the indeterminate inflorescence meristem produces three types of determinate meristems: spikelet pair, spikelet and floral meristems. These meristems are defined by their position and their products. We have discovered a gene in maize, indeterminate floral apex1 (ifa1) that regulates meristem determinacy. The defect found in ifa1 mutants is specific to meristems and does not affect lateral organs. In ifa1 mutants, the determinate meristems become less determinate. The spikelet pair meristem initiates more than a pair of spikelets and the spikelet meristem initiates more than the normal two flowers. The floral meristem initiates all organs correctly, but the ovule primordium, the terminal product of the floral meristem, enlarges and proliferates, expressing both meristem and ovule marker genes. A role for ifa1 in meristem identity in addition to meristem determinacy was revealed by double mutant analysis. In zea agamous1 (zag1) ifa1 double mutants, the female floral meristem converts to a branch meristem whereas the male floral meristem converts to a spikelet meristem. In indeterminate spikelet1 (ids1) ifa1 double mutants, female spikelet meristems convert to branch meristems and male spikelet meristems convert to spikelet pair meristems. The double mutant phenotypes suggest that the specification of meristems in the maize inflorescence involves distinct steps in an integrated process.  相似文献   

8.
9.
LEAFY controls floral meristem identity in Arabidopsis.   总被引:96,自引:0,他引:96  
The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expression procedes expression of the homeotic genes AGAMOUS and APETALA3, which specify organ identify within the flower. Furthermore, we demonstrate that LEAFY is the Arabidopsis homolog of the FLORICAULA gene, which controls floral meristem identity in the distantly related species Antirrhinum majus.  相似文献   

10.
We have analyzed the cell proliferation in a meristem assuming a single file model for root architecture. The meristem file appears to be built up by two clearly separated zones: the first going from the initial cell to the middle of the meristem and the second from the middle to the meristem boundary. The first half of the meristem shows an exponential age distribution for the cell population. In contrast, in the second half of the meristem, the cell kinetics of cycling cells strongly disagree with exponential kinetics and due to the compensation between the observed deviations in both halves, cell supply in the file meristem is in line with linear kinetics. However, we proposed that exponential kinetic equations offer a suitable approach to problems of cell cycle compartments and population age distributions in real meristems, where non-cycling cells cannot be identified inside the meristem, whether we consider the meristem as a whole or study a “window” inside it. Nevertheless, for more exact kinetic analysis, when estimating the proliferative fraction, the width of the “window” and its location along the axis must carefully be taken into account.  相似文献   

11.
12.
Meristems continuously produce new cells to sustain plant growth. Stem cells are maintained in the centre of the meristem and provide the precursor cells for the initiation of new organs and tissues in the periphery. The structure of the meristem is maintained while cells are constantly displaced by new divisions. Recent advances have been made in understanding the intercellular signals that maintain meristem structure by adjusting gene expression according to cell position. In addition to refinements in our understanding of how the position and size of the stem-cell population is regulated, there have been advances in understanding how the location of new organ primordia is controlled and how the meristem influences organ polarity.  相似文献   

13.
The architecture of maize inflorescences, the male tassel and the female ear, is defined by a series of reiterative branching events. The inflorescence meristem initiates spikelet pair meristems. These in turn initiate spikelet meristems which finally produce the floret meristems. After initiating one meristem, the spikelet pair and spikelet meristem convert into spikelet and floret meristems, respectively. The phenotype of reversed germ orientation1 (rgo1) mutants is the production of an increased number of floret meristems by each spikelet meristem. The visible phenotypes include increased numbers of flowers in tassel and ear spikelets, disrupted rowing in the ear, fused kernels, and kernels with embryos facing the base of the ear, the opposite orientation observed in wild-type ears. rgo1 behaves as single recessive mutant. indeterminate spikelet1 (ids1) is an unlinked recessive mutant that has a similar phenotype to rgo1. Plants heterozygous for both rgo1 and ids1 exhibit nonallelic noncomplementation; these mutants fail to complement each other. Plants homozygous for both mutations have more severe phenotypes than either of the single mutants; the progression of meristem identities is retarded and sometimes even reversed. In addition, in rgo1; ids1 double mutants extra branching is observed in spikelet pair meristems, a meristem that is not affected by mutants of either gene individually. These data suggest a model for control of meristem identity and determinacy in which the progress through meristem identities is mediated by a dosage-sensitive pathway. This pathway is combinatorially controlled by at least two genes that have overlapping functions.  相似文献   

14.
15.
In plant development, leaf primordia are formed on the flanks of the shoot apical meristem in a highly predictable pattern. The cells that give rise to a primordium are sequestered from the apical meristem. Maintenance of the meristem requires that these cells be replaced by the addition of new cells. Despite the central role of these activities in development, the mechanism controlling and coordinating them is poorly understood. These processes have been characterized in the Arabidopsis mutant forever young (fey). The fey mutation results in a disruption of leaf positioning and meristem maintenance. The predicted FEY protein shares significant homology to a nodulin and limited homology to various reductases. It is proposed that FEY plays a role in communication in the shoot apex through the modification of a factor regulating meristem development.  相似文献   

16.
Dose dependencies of growth and cytogenetic values have been built to determine that the critical level of root apical meristem damage induced by cute irradiation within the range from 2 to 20 Gy. Causal relationships between frequency of chromosome aberrations and death of tissue, organ, and organism have been analyzed. The critical level of damage in the stem apical meristem and root of seedlings was defined as 44–48% of aberrant anaphase. The exceeding of this level results in launch of a suicidal program in the meristem through induction of multiaberrant damages and interphase cell death. It is assumed that cell competition between clones of nonaberrant, aberrant with single damages, and multiaberrant cells plays an important role in mechanisms of recovery. The exceeding of a 50% level of aberrations results in total or partial recovery of root apical meristem by regeneration. Approximately 70% of chromosome aberrations are the critical index of root apical meristem damage which still allow its regeneration. However, these local regeneration processes are insufficient for recovery of morphogenesis and survival of seedlings.  相似文献   

17.
In plants, the arrangement of organs along the stem (phyllotaxy) follows a predictable pattern. Recent studies have shown that primordium position at the meristem is governed by local auxin gradients, but little is known about the subsequent events leading to the phyllotaxy along the mature stem. We show here that plants expressing a miR164-resistant CUP-SHAPED COTYLEDON2 (CUC2) gene have an abnormal phyllotactic pattern in the fully grown stem, despite the pattern of organ initiation by the meristem being normal. This implies that abnormal phyllotaxy is generated during stem growth. These plants ectopically express CUC2 in the stem, suggesting that the proper timing of CUC2 expression is required to maintain the pattern initiated in the meristem. Furthermore, by carefully comparing the phyllotaxy in the meristem and along the mature inflorescence in wild types, we show that such deviation also occurs during wild-type development, although to a smaller extent. We therefore suggest that the phyllotactic pattern in a fully grown stem results not only from the organogenetic activity of the meristem, but also from the subsequent growth pattern during stem development.  相似文献   

18.
19.
Although great advances have been made in research on the regulation of primordium fate in the floral meristem, our understanding of the molecular events occurring during the floral transition remains incomplete. Via a careful analysis of the expression patterns of five genes encoding housekeeping functions during the floral transition in tomato (using both in situ hybridization and enzyme histochemistry), we identified a particular phase of floral development (sepal initiation) at which cells located toward the base of the meristem show a high level of cellular metabolism, whereas cells at the tip of the meristem dome show little activity. At other stages of floral development, the probes used showed genespecific patterns of expression generally consistent with our previous investigation of the vegetative apical meristem. Our data, in conjunction with other reports in the literature, enabled us to postulate that relative activation of basal cells of the meristem may be of general occurrence during the transition to flowering. Such a hypothesis could account for recent observations using periclinal chimeras on the effect of L3 genotypes on flower development and have a bearing on the expected mechanism by which the number of primordia generated by a floral meristem is regulated.  相似文献   

20.
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomains of the meristem. Using transposon-mediated activation tagging, we have identified Dornr?schen (drn-D) mutants of Arabidopsis that prematurely arrest shoot meristem activity with the formation of radialized lateral organs. The mutated gene (DRN/ESR1), which encodes an AP2/ERF protein, is expressed in a subdomain of meristem stem cells, in lateral organ anlagen, and transiently in the distal domain of organ primordia. During the development of drn-D mutants, expression of the homeobox gene SHOOTMERISTEMLESS is downregulated and later reactivated in an altered domain. In addition, we found increased expression of CLAVATA3 and WUSCHEL, two genes that antagonistically regulate stem cell fate in meristems. These findings suggest that the DRN/ESR1 gene product is involved in the regulation of gene expression patterns in meristems. Furthermore, specific misexpression of DRN in meristem stem cells affects organ polarity and outgrowth in the meristem periphery, indicating that DRN/ESR1 itself, or a process regulated by DRN/ESR1, can act non-cell-autonomously. We elaborate on the role of DRN/ESR1 in meristem and organ development and discuss its possible role in the process of shoot regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号