首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have studied the characteristics of rapid ballistic food-procuring movements in nonpedigree albino rats and have established that after ablation of the second area of the frontal cortex contralaterally to the preferred extremity the number of attempts increased, the duration of the movements decreased, and the phase structure of the movements was reorganized. After bilateral ablation of the cortex the animals completely lost their skill at procuring food. Our results indicate involvement of the frontal cortex in the development and achievement of the motor programs produced.N. I. Pirogov Medical Institute. Ukrainian Ministry of Public Health. Translated from Neirofiziologiya, Vol. 24, No. 2, pp. 186–192, February, 1992.  相似文献   

3.
The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms.  相似文献   

4.
Sleep and Biological Rhythms -  相似文献   

5.
Lateral prefrontal cortex: architectonic and functional organization   总被引:9,自引:0,他引:9  
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral-caudal axis and a dorsal-ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal-ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.  相似文献   

6.
Lateral cortex is the most laterally placed of the four cortical areas in snakes. Earlier studies suggest that it is composed of several subdivisions but provide no information on their organization. This paper first investigates the structure of lateral cortex in boa constrictors (Constrictor constrictor), garter snakes (Thamnophis sirtalis), and banded water snakes (Natrix sipedon) using Nissl and Golgi preparations; and secondly examines the relation of main olfactory bulb projections to the subdivisions of lateral cortex using Fink-Heimer and electron microscopic preparations. Lateral cortex is divided on cytoarchitectonic grounds into two major parts called rostral and caudal lateral cortex. Each part is further divided into dorsal and ventral subdivisions so that lateral cortex has a total of four subdivisions: dorsal rostral lateral cortex (drL), ventral rostral lateral cortex (vrL), dorsal caudal lateral cortex (dcL) and ventral caudal lateral cortex (vcL). Systematic analyses of Golgi preparations indicate that the rostral and caudal parts each contain distinct populations of neurons. Rostral lateral cortex contains bowl cells whose dendrites arborize widely in the outer cortical layer (layer 1). The axons of some bowl cells can be traced medially into dorsal cortex, dorsomedial cortex and medial cortex. Caudal lateral cortex contains pyramidal cells whose somata occur in layers 2 and 3 and whose dendrites extend radially up to the pial surface. In addition, three populations of neurons occur in both rostral and caudal lateral cortex. Stellate cells occur in all three layers and have dendrites which arborize in all directions. Double pyramidal cells occur primarily in layer 2 and have dendrites which form two conical fields whose long axes are oriented radially. Horizontal cells occur in layer 3 and have dendrites oriented concentric with the ependyma. Fink-Heimer preparations of snakes which underwent lesions of the main olfactory bulb show that the primary olfactory projections to cortex are bilateral and restricted precisely to rostral lateral cortex. Electron microscopic degeneration experiments indicate that the olfactory bulb fibers end as terminals which have clear, spherical vesicles and asymmetric active zones. The majority are presynaptic to dendritic spines in outer layer 1. These studies establish that lateral cortex in snakes is heterogeneous and contains two major parts, each containing two subdivisions. The rostral and caudal parts have characteristic neuronal populations. Primary olfactory input is restricted to rostral lateral cortex and seems to terminate heavily on the distal dendrites of bowl cells. Axons of some of these cells leave lateral cortex, so that the rostral lateral cortex forms a direct route by which olfactory information reaches other cortical areas. The functional role of caudal lateral cortex is not clear.  相似文献   

7.
8.
Several decades of patient, functional imaging and neurophysiological studies have supported a model in which the lateral prefrontal cortex (PFC) acts to suppress unwanted saccades by inhibiting activity in the oculomotor system. However, recent results from combined PFC deactivation and neural recordings of the superior colliculus in monkeys demonstrate that the primary influence of the PFC on the oculomotor system is excitatory, and stands in direct contradiction to the inhibitory model of PFC function. Although erroneous saccades towards a visual stimulus are commonly labelled reflexive in patients with PFC damage or dysfunction, the latencies of most of these saccades are outside of the range of express saccades, which are triggered directly by the visual stimulus. Deactivation and pharmacological manipulation studies in monkeys suggest that response errors following PFC damage or dysfunction are not the result of a failure in response suppression but can best be understood in the context of a failure to maintain and implement the proper task set.  相似文献   

9.
《Cell reports》2023,42(5):112449
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
On freely moving albino rats we demonstrated that, when fast food-procuring movements are performed, the mass electrical activity of the lateral hypothalamus (LH) is suppressed 1.6–2.0 sec before the movement beginning recorded with a photoelectrical device. Videorecording of the movements and recording of the spike activity of LH units showed that the latter are activated 1.0–0.1 sec before the movement initiation. The LH is considered a motivation-related structure, which serves as a source providing an increase in the excitability of the structures involved in the control of food-procuring movements and, further on, supporting this increased excitability. The LH is also a component of the mechanisms providing formation of the motor program. The role of the LH in the ensemble of motor centers, which organize and control voluntary movements, is discussed.  相似文献   

12.
《Cell》2021,184(26):6361-6377.e24
  1. Download : Download high-res image (430KB)
  2. Download : Download full-size image
  相似文献   

13.
Eye movements evoked by local electrical stimulation of the dorsal nucleus of the lateral geniculate body were analyzed after removal of the visual cortex and in intact animals during trials on awake cats. No significant difference was observed between the eye movement patterns of the two animal groups evoked by electrical stimulation. These movements could be classed into three main groups: those unassociated with the starting position of the eyes in orbit (or unidirectional movements), goal-directed, and centered movements, with direction depending on the initial position of the eyes in their orbits. Our findings indicate that the cortical visual areas are neither the principal nor an indispensable link in the chain for transmitting signals evoked by (electrically) stimulating the geniculate body from the cortical structures of the direct visual pathway towards the operative links of the oculomotor system. Potential pathways for conducting information from the dorsal nucleus of the lateral geniculate body to oculomotor system structures are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 164–170, March–April, 1987.  相似文献   

14.
Both appetitive and aversive outcomes can reinforce animal behavior. It is not clear, however, whether the opposing kinds of reinforcers are processed by specific or common neural mechanisms. To investigate this issue, we studied macaque monkeys that performed a memory-guided saccade task for three different outcomes, namely delivery of liquid reward, avoidance of air puff, and feedback sound only. Animals performed the task best in rewarded trials, intermediately in aversive trials, and worst in sound-only trials. Most task-related activity in lateral prefrontal cortex was differentially influenced by the reinforcers. Aversive avoidance had clear effects on some prefrontal neurons, although the effects of rewards were more common. We also observed neurons modulated by both positive and negative reinforcers, reflecting reinforcement or attentional processes. Our results demonstrate that information about positive and negative reinforcers is processed differentially in prefrontal cortex, which could contribute to the role of this structure in goal-directed behavior.  相似文献   

15.
Neuronal discharges in the primate temporal lobe, but not in the striate and extrastriate cortex, reliably reflect stimulus awareness. However, it is not clear whether visual consciousness should be uniquely localized in the temporal association cortex. Here we used binocular flash suppression to investigate whether visual awareness is also explicitly reflected in feature-selective neural activity of the macaque lateral prefrontal cortex (LPFC), a cortical area reciprocally connected to the temporal lobe. We show that neuronal discharges in the majority of single units and recording sites in the LPFC follow the phenomenal perception of a preferred stimulus. Furthermore, visual awareness is reliably reflected in the power modulation of high-frequency (>50?Hz) local field potentials in sites where spiking activity is found to be perceptually modulated. Our results suggest that the activity of neuronal populations in at least two association cortical areas represents the content of conscious visual perception.  相似文献   

16.
It was shown during experiments on unrestrained rats that rhythmic stimulation of the pyramidal tract produced a statistically significant increase in the functional activity of neuronal populations of the sensorimotor cortex, manifesting as potentiation of the primary, positive phase of pyramidal cortical response. Combined rhythmically matched stimulation of the pyramidal tract and of the lateral hypothalamus leads to statistically significant enhancement in potentiation of the positive phase of pyramidal cortical response compared with effects produced independently of hypothalamic involvement. When stimulation of the pyramidal tract and the lateral hypothalamus are combined with stimulation applied at the same periodicity to the sensorimotor cortex, a further statistically significant enhancement in potentiation of the positive phase of pyramidal cortical response is seen in addition to the potentiating effect produced by hypothalamic stimulation.Institute for Brain Research of the All-Union Scientific Center of Mental Health, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 367–373, May–June, 1986.  相似文献   

17.
18.
19.
Rats allocated to groups by the method of "emotional resonance": rats which did and did not escape crying of a partner (A- and E-groups, respectively). Unit activity in the right and left prefrontal brain cortex (PFC) was recorded in these rats. The recorded neurons neurons were divided in two groups according to their reaction to a change in the level of food motivation. The so-called D-neurons decreased their activity after feeding of animals after a 24-hour food deprivation and the other group (I-neurons) increased its firing rate rate in this situation. It was shown that hemispheric distributions of D- and I-neurons are different in selected rat groups. In E-rats the I-neurons substantially predominated in the left hemisphere, whereas the D-neurons were more frequently recorded in the right one. No such asymmetry was observed in A-group of rats. During intracranial stimulation of emotionally positive brain structures I-neurons increased their firing rate, predominantly, in the left hemisphere, whereas during intracranial emotionally negative stimulation activation of the D-neurons predominated at the right. Features of the observed functional interhemispheric asymmetry of prefrontal cortex in A- and E-groups of rats were explained by differences in the interaction between hemispheres and dissimilar activation control.  相似文献   

20.
Mushiake H  Saito N  Sakamoto K  Itoyama Y  Tanji J 《Neuron》2006,50(4):631-641
To achieve a behavioral goal in a complex environment, we must plan multiple steps of motor behavior. On planning a series of actions, we anticipate future events that will occur as a result of each action and mentally organize the temporal sequence of events. To investigate the involvement of the lateral prefrontal cortex (PFC) in such multistep planning, we examined neuronal activity in the PFC of monkeys performing a maze task that required the planning of stepwise cursor movements to reach a goal. During the preparatory period, PFC neurons reflected each of all forthcoming cursor movements, rather than arm movements. In contrast, in the primary motor cortex, most neuronal activity reflected arm movements but little of cursor movements during the preparatory period, as well as during movement execution. Our data suggest that the PFC is involved primarily in planning multiple future events that occur as a consequence of behavioral actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号