首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a new system for the continuous measurements of respiratory gas exchange in ventilated subjects. It involves mixing some of the inspired gas with all of the expired gas and withdrawing the mixture at a constant rate through a dry gas meter that measures the flow. The inspired gas and expired gas mixtures are sampled and O2 and CO2 concentrations measured with a paramagnetic gas analyzer and a capnograph, respectively, to an accuracy of 0.01%. Evidence is presented to confirm the necessary stability and sensitivity of these instruments. It is possible to use the system with high inspired O2 concentrations, with ventilators where there is incomplete separation of inspired and expired gas, and in the presence of intermittent mandatory ventilation, positive end-expiratory pressure, and continuous airway pressure. The system was compared with the N2-dilution method and with the collection of expired gas in a Douglas bag in dog experiments and with patients in the intensive therapy unit. Excellent correlation between these methods was found in all circumstances.  相似文献   

2.
A multigas concentration analyzer particularly suited for respiratory gas analysis has been developed using a new principle based on the measurement of the intensity of light emitted by excited atoms or ions in a direct current glow discharge. This glow discharge spectral emission gas analyzer (GDSEA), or light spectrometer, simultaneously measures O2, N2, CO2, He, and N2O gas concentrations with a 0-90% response time of 100 ms and a sample rate of less than 20 ml/min in a short gas sample line configuration. Mole accuracy and resolution of the GDSEA using a short sample line were determined in the laboratory to be +/- 0.15 to +/- 0.7% and 0.02-0.05%, respectively. In the clinical setting a comparative evaluation was made with a mass spectrometer in a long sample line, computerized, multibed, respiratory monitoring system. Results indicate a close agreement between the two instruments with differences in mixed inspiratory or expiratory O2 and CO2 concentrations of less than 2% and of derived variables, such as O2 consumption, CO2 production, and respiratory exchange ratio, of less than 5%.  相似文献   

3.
In a previous study using tracheal insufflation of O2 (TRIO) at a rate of 2 l/min, we showed that anesthetized paralyzed dogs could be adequately oxygenated for up to 5 h, albeit with hypercapnia (mean arterial PCO2 approximately 160 Torr). To examine the contribution of cardiogenic oscillations in producing this gas exchange, we studied seven anesthetized paralyzed dogs weighing between 19.6 and 25.5 kg and quantified gas transport by analyzing continuous N2-washout curves in vivo and postmortem. We found that cardiogenic oscillations increase gas mixing roughly fourfold and that this value was independent of insufflation flow rate (0.2-10.0 l/min). Our results lend indirect evidence that, with regard to gas exchange, there are two mechanistically different zones in the lung during TRIO. One zone, located in the more peripheral areas of the lung, is dominated by the effects of cardiac oscillations and molecular diffusion and accounts for the increase in gas mixing found in the alive vs. dead dog. A second zone, close to the insufflated jet of O2, uses convective streaming to produce greater gas mixing at higher flows.  相似文献   

4.
Noninvasive diffusing capacity and cardiac output in exercising dogs   总被引:1,自引:0,他引:1  
We have developed a rebreathing procedure to determine diffusing capacity (DLCO) and pulmonary blood flow (Qc) in the awake, exercising dog. A low dead space, leak-free respiratory mask with an incorporated mouthpiece was utilized to achieve mixing between the rebreathing bag and the dog's lung. The rebreathing bag was initially filled with approximately 1.0 liter of gas containing 0.6% C2H2, 0.3% C18O, 9% He, and 35-40% O2. End-tidal gas concentrations were measured with a respiratory mass spectrometer. The disappearance of C2H2 and C18O was measured with respect to He to calculate Qc and DLCO. Values for DLCO in dogs, expressed per kilogram of body weight, were much larger than those reported in humans. However, at a given level of absolute O2 consumption, measurements of absolute DLCO in dogs were comparable to those reported in humans by both rebreathing and steady-state methods at rest and near-maximal exercise. These results suggest that DLCO is more closely matched to the metabolic capacity (i.e., maximal O2 consumption) than to body size between these two species.  相似文献   

5.
An original in vitro approach was adopted to expose cells to volatile agents. The anaesthetic nitrous oxide (N(2)O) was chosen as the model agent, and type II pneumocyte-like cells (A549 cells) were used as the target to represent the lungs. A time-lapse microscopy station was equipped with a manual gas mixer that allowed the generation of a mixture of N(2)O/air/CO(2) in the gas phase, to provide a uniform distribution of the volatile agent. The dissolution of N(2)O in the culture medium was monitored by gas chromatography-electron capture detection. Biochemical alterations, in terms of homocysteine accumulation, demonstrated that intracellular methionine synthase had been inactivated by N(2)O absorbed by the cells, a process that also occurs in vivo. Toll-like receptors, which are key molecules in inflammatory lung diseases, were also investigated at the molecular level. Our experiments indicated that biochemical and molecular alterations occurred in the cells, even under conditions where neither morphologic changes nor consistent alterations in cell proliferation were evident. This in vitro exposure system can be efficiently adopted for looking at the repeat-dose effects of volatile agents on respiratory tissues. Moreover, it could be of further benefit for identifying the wide range of specific cell targets, and for monitoring relevant endpoints in the cellular and molecular processes that occur during exposure to volatile compounds.  相似文献   

6.
Criteria and Methodology for Identifying Respiratory Denitrifiers   总被引:2,自引:1,他引:1       下载免费PDF全文
Respiratory denitrification is not always adequately established when bacteria are characterized. We have tested a simple method that allows one to evaluate whether the two necessary criteria to claim denitrification have been met, namely, that N(inf2) or N(inf2)O is produced from nitrate or nitrite and that this reduction is coupled to a growth yield increase. Microorganisms were cultured in sealed tubes under a helium headspace and in the presence of 0, 2, 4, 7, and 10 mM nitrate or nitrite. After growth had ceased, N(inf2) and N(inf2)O were quantified by gas chromatography and the final protein concentration was measured. Net protein production was linearly related to nitrate concentration for all denitrifiers tested and ranged from 2 to 6 g of protein per mol of electron equivalent reduced. Nitrogen recovery as N(inf2) plus N(inf2)O from nitrate and nitrite transformed exceeded 80% for all denitrifiers. We also suggest that a rate of N gas production of >10 (mu)mol/min/g of protein can be used as an additional characteristic definitive of denitrification since this process produces gas more rapidly than other processes. These characteristics were established after evaluation of a variety of well-characterized respiratory denitrifiers and other N(inf2)O-producing nitrate reducers. Several poorly characterized denitrifiers were also tested and confirmed as respiratory denitrifiers, including Aquaspirillum itersonii, Aquaspirillum fasciculus, Bacillus azotoformans, and Corynebacterium nephridii. These criteria distinguished respiratory denitrifiers from other groups that reduce nitrate or produce N(inf2)O. Furthermore, they correctly identified respiratory denitrification in weak denitrifiers, a group in which the existence of this process may be overlooked.  相似文献   

7.
The hypothesis of respiratory protection, originally formulated on the basis of results obtained with Azotobacter species, postulates that consumption of O(2) at the surface of diazotrophic prokaryotes protects nitrogenase from inactivation by O(2). Accordingly, it is assumed that, at increased ambient O(2) concentrations, nitrogenase activity depends on increased activities of a largely uncoupled respiratory electron transport system. The present review compiles evidence indicating that cellular O(2) consumption as well as both the activity and the formation of the respiratory system of Azotobacter vinelandii are controlled by the C/N ratio, that is to say the ratio at which the organism consumes the substrate (i.e. the source of carbon, reducing equivalents and ATP) per source of compound nitrogen. The maximal respiratory capacity which can be attained at increased C/N ratios, however, is controlled, within limits, by the ambient O(2) concentration. When growth becomes N-limited at increased C/N ratios, cells synthesize nitrogenase and fix N(2). Under these diazotrophic conditions, cellular O(2) consumption remains constant at a level controlled by the O(2) concentration. Control by O(2) has been studied on the basis of both whole cell respiration and defined segments of the respiratory electron transport chain. The results demonstrate that the effect of O(2) on the respiratory system is restricted to the lower range of O(2) concentrations up to about 70 microM. Nevertheless, azotobacters are able to grow diazotrophically at dissolved O(2) concentrations of up to about 230 microM indicating that respiratory protection is not warranted at increased ambient O(2) concentrations. This conclusion is supported and extended by a number of results largely excluding an obvious relationship between nitrogenase activity and the actual rate of cellular O(2) consumption. On the basis of theoretical calculations, it is assumed that the rate of O(2) diffusion into the cells is not significantly affected by respiration. All of these results lead to the conclusion that, in the protection of nitrogenase from O(2) damage, O(2) consumption at the cell surface is less effective than generally assumed. It is proposed that alternative factors like the supply of ATP and reducing equivalents are more important.  相似文献   

8.
Although exercise testing is useful in the diagnosis and management of cardiovascular and pulmonary diseases, a rapid comprehensive method for measurement of ventilation and gas exchange has been limited to expensive complex computer-based systems. We devised a relatively inexpensive, technically simple, and clinically oriented exercise system built around a desktop calculator. This system automatically collects and analyzes data on a breath-by-breath basis. Our calculator system overcomes the potential inaccuracies of gas exchange measurement due to water vapor dilution and mismatching of expired flow and gas concentrations. We found no difference between the calculator-derived minute ventilation, CO2 production, O2 consumption, and respiratory exchange ratio and the values determined from simultaneous mixed expired gas collections in 30 constant-work-rate exercise studies. Both tabular and graphic displays of minute ventilation, CO2 production, O2 consumption, respiratory exchange ratio, heart rate, end-tidal O2 tension, end-tidal CO2 tension, and arterial blood gas value are included for aid in the interpretation of clinical exercise tests.  相似文献   

9.
Suspensions of two strains of Pseudomonas aeruginosa (ON12 and ON12-1) were used to reduce NO(3) and NO(2), respectively, to N(2)O. The evolved N(2)O was quantified by gas chromatography with electron capture detection, and the N abundance was determined by mass spectrometry with a special inlet system and triple-collector detection. Sample gas containing unknown N(2)O pools as small as 0.5 ng of N was analyzed by use of a spike technique, in which a reference gas of N(2)O of natural N abundance was added to obtain enough total N for the mass spectrometer. In NO(3) or NO(2) pools, the N abundance could be determined in samples as small as approximately 3.5 ng of N. No cross-contamination took place between the NO(3) and NO(2) pools. The excellent separation of NO(3) and NO(2) pools, small sample size required, and low contamination risk during N(2)O analysis offer great advantages in isotope studies of inorganic N transformations by, e.g., nitrifying or denitrifying bacteria in the environment.  相似文献   

10.
The adaptation of the respiratory metabolism in roots of soybean (Glycine max L. Merr. cv Ransom) treated with herbicides that inhibit the enzyme acetolactate synthase (ALS) was analyzed. A new gas phase dual-inlet mass spectrometry system for simultaneous measurement of 34O2 to 32O2 and O2 to N2 ratios has been developed. This system is more accurate than previously described systems, allows measurements of much smaller oxygen gradients, and, as a consequence, works with tissues that have lower respiration rates. ALS inhibition caused an increase of the alternative oxidase (AOX) protein and an accumulation of pyruvate. The combination of these two effects is likely to induce the activation of the alternative pathway and its participation in the total respiration. Moreover, the start of the alternative pathway activation and the increase of AOX protein were before the decline in the activity of cytochrome pathway. The possible role of AOX under ALS inhibition is discussed.  相似文献   

11.
几种木本植物的N2O释放与某些生理活动的关系   总被引:16,自引:4,他引:16  
使用带有开放气路的气体交换测定系统,同步测定了几种针、阔叶树种的光合作用、呼吸作用及气孔导度.结果表明,低光下树木针叶或叶片释放N2O的速率与光合速率无显著相关.伴随根、茎、叶的呼吸,检测到有N2O吸收现象,其通量与温度及呼吸强度呈正相关.气孔导度明显影响N2O的通量,表明气孔可能是木本植物释放N2O的主要途径.  相似文献   

12.
A simple, portable device for the preparation and delivery of gas mixtures has been designed and constructed. The basic feature of the device is the use of gas flow controllers to maintain stable flow rates over a wide range of downstream pressures, instead of the capillary tubes and water-filled barostats commonly used in gas-mixing devices. Elimination of the barostat avoids problems such as water leakage, the loss of gases through the barostat, and changes in gas pressure due to evaporative loss of water from the barostat. The absence of a barostat also provides a closed system, allowing the use of the device for mixing and delivering of toxic gases. The prototype of the device has been used to prepare mixtures of different gases for more than 1 year and has been found to operate consistently and reproducibly. The actual concentrations of O2, CO2, and N2 in gas mixtures (determined by gas chromatography) immediately after mixing were between 2.2 and 6.6% of the desired values in four performance tests. Fluctuations in concentration of gases in mixtures after 9 days of continuous gas delivery was less than 2% in four performance tests.  相似文献   

13.
Denitrifying bacteria convert nitrate (NO(3) (-) ) to dinitrogen (N(2) ) gas through an anaerobic respiratory process in which the potent greenhouse gas nitrous oxide (N(2) O) is a free intermediate. These bacteria can be grouped into classes that synthesize a nitrite (NO(2) (-) ) reductase (Nir) that is solely dependent on haem-iron as a cofactor (e.g. Paracoccus denitrificans) or a Nir that is solely dependent on copper (Cu) as a cofactor (e.g. Achromobacter xylosoxidans). Regardless of which form of Nir these groups synthesize, they are both dependent on a Cu-containing nitrous oxide reductase (NosZ) for the conversion of N(2) O to N(2) . Agriculture makes a major contribution to N(2) O release and it is recognized that a number of agricultural lands are becoming Cu-limited but are N-rich because of fertilizer addition. Here we utilize continuous cultures to explore the denitrification phenotypes of P.?denitrificans and A.?xylosoxidans at a range of extracellular NO(3) (-) , organic carbon and Cu concentrations. Quite distinct phenotypes are observed between the two species. Notably, P.?denitrificans emits approximately 40% of NO(3) (-) consumed as N(2) O under NO(3) (-) -rich Cu-deficient conditions, while under the same conditions A.?xylosoxidans releases approximately 40% of the NO(3) (-) consumed as NO(2) (-) . However, the denitrification phenotypes are very similar under NO(3) (-) -limited conditions where denitrification intermediates do not accumulate significantly. The results have potential implications for understanding denitrification flux in a range of agricultural environments.  相似文献   

14.
Pulmonary gas exchange was measured in seven resting supine subjects breathing air or a dense gas mixture containing 21% O2 in sulfur hexafluoride (SF6). The mean value of the alveolar-arterial oxygen difference (AaDO2) decreased from 12.4 on air to 7.0 on SF6 (P less than 0.01), and increased again to 13.4 when air breathing resumed (P less than 0.01). No differences occurred between gas mixtures for O2 consumption, respiratory quotient, minute ventilation, breathing frequency, heart rate, or blood pressure, and the improved oxygen transfer could not be attributed to changes in cardiac output or mixed venous oxygen content in the one subject in which they were measured. These results are best explained by an altered distribution of ventilation during dense gas breathing, so that the ventilation-perfusion ratio (VA/Q) variance was reduced. Of several considered mechanisms, we favor one in which SF6 promotes cardiogenic gas mixing between peripheral parallel units having different alveolar gas concentrations. This mechanism allows for observed increases in arterial carbon dioxide tension and dead space-to-tidal volume ratio during dense gas breathing, and suggests that intraregional VA/Q variance accounts for at least one-half of the resting AaDO2 in healthy supine young men.  相似文献   

15.
The effects of changing blood volume within the thoracoabdominal cavity (Vtab) have been studied in four male subjects trained in respiratory maneuvers. Subjects were studied lying supine in a pressure plethysmograph with inflatable fracture splints placed around both arms and legs. Changes in Vtab were produced by inflating the splints to 30 cmH2O. Thoracic gas volume (Vtg) measured by Boyle's law, and the change in chest wall volume (delta Vw), measured by anteroposterior magnetometers on rib cage and abdomen, were measured almost simultaneously and at two respiratory system volumes. The quantity of blood moved by splint inflation was estimated for each subject at both respiratory system volumes and varied between 215 and 752 ml. The chest wall increased 64 +/- 11.8% (mean +/- SD) of the increase in Vtab. Thus increases in thoracoabdominal blood volume increase Vw about twice the decrease in Vtg.  相似文献   

16.
The effect of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed four times during the 80 day trial were approximately 20% higher than emissions from unmixed (static) piles. For both treatments, carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) accounted for 75-80%, 18-21%, and 2-4% of GHG emissions, respectively. Seventy percent of CO(2) emissions and 95% of CH(4) emissions from all piles occurred within first 23 days. By contrast, 80-95% of N(2)O emissions occurred after this period. Mixed and static piles released 2 and 1.6 kg GHG (CO(2)-Eq.) for each kg of degraded volatile solids (VS), respectively. Our results suggest that to minimize GHG emissions, farmers should store manure in undisturbed piles or delay the first mixing of compost piles for approximately 4 weeks.  相似文献   

17.
Measurement of respiratory gas composition by a mass spectrometer lags behind the measurement of gas flow. To obtain specific gas volumes (e.g., the N2 volume) by multiplication and integration of concentration and flow, one has to synchronize flow and concentration signals using the delay time (TD) of the gas analyzer. During the N2 washout, however, gas composition changes and causes alterations of TD. This leads to errors of up to 17 and 70% in the measurement of pulmonary volume and series dead space, respectively, in an ideally mixing physical model of the lung. On the basis of Poiseuille's law and exact measurements of the characteristics of the capillary it is possible to adjust the synchronization, which improves the absolute accuracy considerably.  相似文献   

18.
The use of an ion trap mass spectrometer with three different membrane inlet probes is described. Two methods of removing water from the sample are compared. One is the use of a PTFE-silicone rubber double membrane, PTFE is relatively impermeable to water and so reduces the amount entering with the gas sample (Probe A). The second is the use of a silicone rubber membrane covered long probe, which condenses water out of the sample (Probe B). Response times (100%) for dissolved N2O, O2, Ar and CO2 without He in the chamber vary from between 158 and 684 s with Probe A. For the same probe with He, the response times were between 283 and 551 s. In the gas phase response times were between 99 and 153 s with He and 117 and 122 s without He. Probe B had 100% response of between 122 and 152 s for dissolved gases. Further extension of the probe by 2 m slowed response times as did increasing the ionisation time. Response times for Probe B increased to between 99 and 340 s when ionisation time increased from 1000 to 24,930 microseconds. Plots of output against concentration showed the steepest line of response for the short single membrane covered probe with 1000 microseconds ionisation time. Increasing the ionisation time, extending the probe and the use of a double membrane all reduced the gradient of output against concentration for every gas tested. In an intact sediment core, concentrations of O2, N2O and CO2 rose at the start and the concentration of N2 fell. As the disturbed sediment settled, this was reversed. The initial increase in O2 concentration stimulated respiration and inhibited the final pathway in dentrification producing higher concentrations of N2O and reducing the concentration of N2.  相似文献   

19.
The accuracy of a computerized metabolic system, using inspiratory and expiratory methods of measuring ventilation, was assessed in eight male subjects. Gas exchange was measured at rest and during five stages on a cycle ergometer. Pneumotachometers were placed on the inspired and expired side to measure inspired (VI) and expired ventilation (VE). The devices were connected to two systems sampling expired O(2) and CO(2) from a single mixing chamber. Simultaneously, the criterion (Douglas bag, or DB) method assessed VE and fractions of O(2) and CO(2) in expired gas (FE(O(2)) and FE(CO(2))) for subsequent calculation of O(2) uptake (VO(2)), CO(2) production (VCO(2)), and respiratory exchange ratio. Both systems accurately measured metabolic variables over a wide range of intensities. Though differences were found between the DB and computerized systems for FE(O(2)) (both inspired and expired systems), FE(CO(2)) (expired system only), and VO(2) (inspired system only), the differences were extremely small (FE(O(2)) = 0.0004, FE(CO(2)) = -0.0003, VO(2) = -0.018 l/min). Thus a computerized system, using inspiratory or expiratory configurations, permits extremely precise measurements to be made in a less time-consuming manner than the DB technique.  相似文献   

20.
The steady-state sensitivity of resistance pneumotachographs is proportional to viscosity. Dynamic characteristics of pneumotachographs, pressure transducers, and mass spectrometers are also viscosity dependent. We derive linear equations to approximate the viscosities of O2, N2, CO2, H2O, He, N2O, and Ar for temperatures between 20 and 40 degrees C by using published viscosity data and a nonlinear extrapolation equation. We verify the accuracy of the extrapolation equation by comparison with published data. Our linear equations for pure gas viscosities yield standard errors less than 0.35 microP. We also compare a nonlinear equation for calculating the viscosities of mixtures of gases with published measured viscosities of dry air, humid air, and He-O2 and N2-CO2 mixtures. The maximum difference between published and calculated values is 1.3% for 10% CO2 in N2. All other differences are less than 0.38%. For saturated humid air at 35 degrees C, a linear concentration-weighted combination of viscosities differs from our nonlinear equation by 4.9, 2.1, and 1.7% at barometric pressures of 32, 83, and 100 kPa, respectively. By use of our method, the viscosity of normal respiratory gases can be calculated to within 1% of measured values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号