首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Activities of several metabolic enzymes show distinct patterns of zonation along the intestinal tract of tilapia (Oreochromis niloticus), rainbow trout (Oncorhynchus mykiss) and copper rockfish (Sebastes caurinus). Zonation is species and enzyme specific, with different metabolic activities concentrated in specific areas, and few generalizations can be made. The rockfish show the smallest degree of zonation, with highest activities in the third quarter of the intestine, and shallow gradients to either side, and a general upswing in activity towards the distal end. In the trout, mitochondrial enzyme activities (citrate synthase, glutamate dehydrogenase, malate dehydrogenase) are highest in the pyloric caeca and decrease along the length of the small intestine. This pattern is accentuated for malic enzyme and glucose 6-phosphate dehydrogenase. These enzymes drop precipitously in activity after the first few sections of the small intestine, while other NADP-linked dehydrogenases (isocitrate dehydrogenase, and 6-phosphogluconate dehydrogenase) show moderate activity in pyloric caeca and peak toward the distal section of the small intestine. In tilapia, glutamate dehydrogenase shows a similar decrease as in trout, but citrate synthase peaks towards the distal sections. NADP-dependent dehydrogenases reveal distinct patterns, peaking in different sections of the intestine-malic enzyme in the proximal midsection, glucose 6-phosphate dehydrogenase in the distal mid-section, and isocitrate dehydrogenase in the anal section. Enzyme activities in the stomach of trout and tilapia also show zonation, with the midsection generally displaying the highest activities. A 5-day treatment of tilapia with an intraperitoneal cortisol deposit (25 mg kg(-1) wet mass) drastically alters metabolic performance along the gut in enzyme specific patterns, generally increasing enzyme activities in site-specific arrangements. Cortisol treatment also leads to the expected increases in activities of phosphoenolpyruvate carboxykinase, pyruvate kinase and aspartate aminotransferase in liver, but not in kidney. Aspartate aminotransferase is the only enzyme in brain significantly increased by cortisol treatment. Short-term food deprivation changes enzyme patterns, often resembling those observed after cortisol administration. We conclude that brain, liver and intestinal amino acid metabolism is an important target for cortisol action in fish and that metabolic zonation is a key factor to be reckoned with when analyzing physiological phenomena in the fish intestine.  相似文献   

2.
Glutamine synthetase (EC 6.3.1.2) (GS) and glutamyltransferase (EC 2.3.2.1) (GT) specific activity were examined in developing A/Jax and C57BL/6J (C57) mouse fetal secondary palates. In addition, the induction of palatal GS was also examined after maternal injection of dexamethasone. Palatal GT activity was uniformly higher in A/J than C57 palates with both strains showing highest activity late on day 13 of gestation and a drop in activity by early day 14. In contrast, A/J palatal GS activity peaked transiently late on day 13, dropped by early day 14 and remained lower throughout the remaining period of palatal development. Palatal GS activity in C57 mouse fetuses, although failing to show a discrete transient peak of activity, remained at a constant elevated level from early day 13 to late day 14 and did not decrease until day 15 of gestation. These elevated levels of palatal GS and GT activity correspond to the gestation period of maximal palatal glycoconjugate biosynthesis. Thus, palatal GS activity may play an important regulatory role in the synthesis of these macromolecules. A/J and C57BL/6J mice exhibit different susceptibilities to glucocorticoid-induced cleft palate. However, maternal administration of a non-teratogenic dose of dexamethasone on either late day 12 or late day 13 resulted in a dramatic stimulation of both A/J and C57 fetal palatal GS but not GT activity when assay 18 h later. A/J palatal tissue responded to dexamethasone with greater induction of palatal GS activity than enzyme activity in C57 palates. Palatal GS, sensitive to glucocorticoid stimulation, may thus be an important link in expressing hormonal control of normal palatal differentiation.  相似文献   

3.
Induction of glutamine synthetase (GS) by cortisol has been shown to occur in monolayer cultures of cells obtained by enzymatic dissociation of retinas from 8- and 12-day-old chick embryos with papain (0.1%) or trypsin (0.25%). Although essentially single cells when plated, monolayers obtained by enzymatic dissociation show significant aggregation by 4--6 h. Monolayers prepared by mechanical dispersion (cells forced through successively smaller gage needles) are minimally inducible, perhaps owing to poor viability in such cultures. Storage at 4 degrees C for 24 h prior to treatment with cortisol significantly elevated both basal GS activity and inducibility in whole (but not in monolayer) retina cultures.  相似文献   

4.
Induction of glutamine synthetase (GS) by cortisol has been shown to occur in monolayer cultures of cells obtained by enzymatic dissociation of retinas from 8- and 12-day-old chick embryos with papain (0.1%) or trypsin (0.25%). Although essentially sigle cells when plated, monolayers obtained by enzymatic dissociation show significant aggregation by 4–6 h. Monolayers prepared by mechanical dispersion (cells forced through successively smaller gage needles) are minimally inducible, perhaps owing to poor viability in such cultures. Storage at 4°C for 24 h prior to treatment with cortisol significantly elevated both basal GS activity and inducibility in whole (but not in monolayer) retina cultures.  相似文献   

5.
The effect of hypobaric hypoxia on the activities of glutamine synthetase, glutaminase and cyclic 3'5' AMP phosphodiesterase in rat brain was studied after exposure to 25,000' for 6 h. Glutamine synthetase activity was increased in all the regions of brain studied, and addition of gamma amino butyric acid, serotonin and cortisol in vitro produced a differential response. Glutaminase activity decreased in the whole brain. Cyclic 3'5' AMP phosphodiesterase activity decreased in cerebellum, medulla, hypothalamus and pituitary showing an accumulation of cyclic 3'5' AMP in these regions. The results suggest that glutamine synthesis and degradation are regulated in the central nervous system by cyclic AMP and cortisol: Gamma aminoburyric acid and other compounds can modulate the activity of glutamine synthetase and glutaminase.  相似文献   

6.
Treatment of CEM-C7 cells with glucocorticoids produces a 2.5-fold increase in the activity of the enzyme glutamine synthetase (GS). This increase is specific for steroids with glucocorticoid activity adn occurs over a range of steroid concentrations consistent with a receptor-mediated mechanism. Half-maximal and maximal inductions by dexamethasone (dex) occur at 2 X 10(-8) M and 2 X 10(-7) M dex, respectively, concentrations approximately equal to those necessary to produce half and full occupancy of glucocorticoid receptors. GS activity began to increase 1 hour after dex treatment and was complete by 12 hours. This is well before any of the growth inhibitory or cytolytic effects of dex on this cell line occur. This increase was dependent on the presence of glucocorticoid receptors and required both RNA and protein synthesis. Removal of dex following stimulation to maximal levels resulted in a decrease of GS activity to preinduced levels with a half-time of 5 hours. Glutamine deprivation of cells resulted in increased GS activity. However, even in the total absence of glutamine, dex treatment elicited a 2.0-2.5-fold increase in GS activity, ruling out inhibition of glutamine uptake as a mechanism for the dex-induced increase. Experiments with 5'-bromodeoxyuridine (BrdU) demonstrated that GS elevation was sensitive to BrdU substitution of DNA, while dex-induced growth inhibition was not. Therefore GS elevation and growth inhibition in this cell line appear to be independently expressed steroid responses.  相似文献   

7.
Two glutamine synthetase (GS) cDNA clones from L. luteus were identified and characterized. The nucleotide sequence analysis proved that they represent highly homologous but distinct mRNA species. Northern blot hybridization revealed that pc LINGS encodes the nodule-specific subunit of the GS while pcLIGS1 represents the nonspecific one present in nodule tissue as well as in uninfected roots.  相似文献   

8.
Glutamine synthetase in muscle and kidney   总被引:2,自引:5,他引:2  
1. Glutamine synthetase activity has been determined in extracts of rat cardiac and skeletal muscle and kidney, after treatment to ensure that the rate of synthesis was proportional to time of incubation and to amount of extract added. The activity was measured by two methods, with hydroxylamine as substrate. 2. No activity was detected in rat heart extract by either method. The activity in skeletal muscle was of the order of 20mumol of glutamylhydroxamate synthesized/h per g of tissue under optimum conditions. The activity in kidney extracts was 180mumol/h per g of tissue when measured as ferric hydroxamate. 3. The activity in both skeletal-muscle and kidney extracts was inhibited by P(i). The inhibition is competitive for the muscle enzyme, with a K(i) of 12mm. For the kidney enzyme the inhibition is non-competitive, and less marked. Possible enzyme mechanisms that would lead to these types of inhibition are discussed. 4. Several observations are reported that suggest that the enzymes from muscle and kidney are not identical. 5. Growth hormone, either in vivo or in vitro, did not affect the measured glutamine synthetase activity of tissue extracts.  相似文献   

9.
10.
Glutamine synthetase in brain: effect of ammonia   总被引:16,自引:0,他引:16  
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions.Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia.Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas.In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.  相似文献   

11.
Glutamine synthetase regulation by energy charge in sunflower roots   总被引:5,自引:3,他引:2       下载免费PDF全文
Energy charge [(ATP) + ½ (ADP)]/[(ATP) + (ADP) + (AMP)] and glutamine synthetase activity (transferase reaction) of roots increase in a near congruent manner when decotyledonized sunflower plants (Helianthus annuus L. var. Mammoth Russian) are grown in nitrate for 9 days. Replacement of nitrate with ammonium for the final 2 days leads to a higher energy charge and increased enzyme activity. Similar correlations occur when nitrate plants are placed on a zero nitrogen regimen and when they are subjected to continuous darkness. A rank order correlation of 0.72 is obtained for all data. Control concepts such as adenylylation-deadenylylation and ammonium inhibition of enzyme synthesis are not supported by the data. Energy charge-enzyme activity plots support the view that glutamine synthetase of sunflower roots is subject to control by end products of glutamine metabolism. Alanine appears to exert a modulating effect on the regulation of glutamine synthetase by energy charge.  相似文献   

12.
Cortisol induces glutamine synthetase (GS) in neural retina tissue of chick embryos. GS induction represents a characteristic feature of embryonic retina differentiation. However, if the tissue is dissociated into single cells, the dispersed cells are not inducible for GS. We report that cell dispersion results in a rapid and marked reduction in the level of cortisol-binding cytoplasmic receptors. This reduction persists if the cells are maintained in a dispersed state. However, if the cells are reaggregated and they reconstruct tissue-like contacts and architecture, the level of cortisol receptors increases, and so does inducibility for GS. The results indicate that, in the embryonic neural retina histotypic cell contacts and interactions are involved in regulating the level of cortisol receptors. We propose that cell contact-dependent signals from the cell surface may modulate levels of cytoplasmic cortisol receptors necessary for GS induction.  相似文献   

13.
W E Knox  H Z Kupchik  L P Liu 《Enzyme》1971,12(1):88-98
  相似文献   

14.
In the neural retina of the chick embryo, hydrocortisone (HC) elicits differential gene expression resulting in the induction of glutamine synthetase (GS), which is an enzyme marker of differentiation in the retina. The relationship between nuclear binding of receptor-hydrocortisone (R-HC) complexes and GS induction was investigated in cultures of retina tissue from 12-day chick embryos. The number of HC binding sites in the cytoplasm was estimated as 1650+/-200 per retina cell; there are approximately 1500+/-100 acceptor sites for R-HC per retina nucleus. GS induction in the retina became detectable only after R-HC bound to more than 40% of the nuclear acceptors sites; increased binding coincided with higher induction levels, until complete site saturation was attained; Proflavine, which blocks preferentially and completely GS induction in the retina by interfering in the nucleus with the enzyme-inducing action of the hormone, reduced nuclear binding of R-HC by only 20%; thus, only part of the R-HC that binds in the nucleus appears to be directly involved in eliciting the induction of GS. Within one hour after exposure of the retina to an inducing dose of HC, there was translocation of HC and HC-receptors (as R-HC complexes) from the cytoplasm into the nucleus and saturation of nuclear accepegan to decline; in 12 h, it was reduced to 50% of the initial saturation level. Since, during this time, the enzyme activity to increase, persistence of the induced state depends on association of the hormone with only a portion of the sites in the nucleus to which it can bind. The decrease in the amount of bound HC in the nuclei of induced cells was accompanied by an increase in the level of HC receptors in the cytoplasm. About 50% of this increase could be prevented by cycloheximide; this suggests that the reappearance of HC receptors in the cell cytoplasm may be due, at least in part, to de novo synthesis of HC receptors.  相似文献   

15.
Glutamine synthetase (GS, EC 6.3.1.2.) has long been considered as a protein specific for astrocytes in the brain, but recently GS immunoreactivity has been reported in oligodendrocytes both in mixed primary glial cell cultures and in vivo. We have investigated its expression and regulation in "pure" oligodendrocyte cultures. "Pure" oligodendrocyte secondary cultures were derived from newborn rat brain primary cultures enriched in oligodendrocytes as described by Besnard et al. (1987) and were grown in chemically defined medium. These cultures contain more than 90% galactocerebroside-positive oligodendrocytes and produce "myelin" membranes (Fressinaud et al., 1990) after 6-10 days in subcultures (30-35 days, total time in culture). The presence of GS in oligodendrocytes from both primary glial cell cultures and "pure" oligodendrocyte cultures was confirmed by double immunostaining with a rabbit antisheep GS and guinea pig antirat brain myelin 2', 3'-cyclic nucleotide 3'-phosphodiesterase. In "pure" oligodendrocyte cultures, about half of cells were labeled with anti-GS antibody. Furthermore, on the immunoblot performed with a rabbit antisheep GS, the GS protein in "pure" oligodendrocyte secondary cultures was visualized as a single band with an apparent molecular mass of about 43 kDa. In contrast, two protein bands for GS were observed in cultured astrocytes. On the immunoblot performed with a rabbit antichick GS, two immunopositive protein bands were observed: a major one migrating as the purified adult chick brain GS and a minor one with a lower molecular mass. Two similar immunoreactive bands were also observed in pure rat astrocyte cultures. Compared to pure rat astrocyte cultures, "pure" oligodendrocyte cultures of the same age displayed an unexpectedly high GS specific activity that could not be explained by astrocytic contamination of the cultures (less than 5%). As for cultured astrocytes, treatment of oligodendrocyte cultures with dibutyryl-adenosine 3':5'-cyclic monophosphate, triiodothyronine, or hydrocortisone increased significantly GS specific activity. Interestingly, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor that increase the GS activity in astrocytes do not affect this activity in oligodendrocytes. Thus we confirm the finding of Warringa et al. (1988) that GS is also expressed in oligodendrocytes. We show that its activity is regulated similarly in astrocytes and oligodendrocytes by hormones, but that it is regulated differently by growth factors in these two cell types.  相似文献   

16.
Glutamine synthetase was shown to be localized in liver mitochondria of the American alligator, Alligator mississippiensis, by immunofluorescent staining of frozen liver sections and by the detection of enzymatic activity and immunoreactive protein in the mitochondrial fraction following subcellular fractionation of liver tissue by differential centrifugation. The primary translation product of alligator liver glutamine synthetase mRNA was shown to have an Mr = 45,000 which is similar if not identical in size to that of the mature subunit. This mRNA was found to be heterogeneous in size with a major form corresponding to 2.8-3.0 kb and a lesser form corresponding to around 2 kb. Both are in excess of the size required to code for the glutamine synthetase subunit. The synthesis and presumably the mitochondrial import of glutamine synthetase in alligator liver are thus very similar to the same processes in avian liver. Despite the excretion of a high percentage of nitrogen as ammonia, the demonstration of a mitochondrial glutamine synthetase indicates the alligator has the typical avian-type uricotelic ammonia-detoxification system in liver. This suggests that the transition to uricotelism occurred in the sauropsid line of evolution and has persisted through both the lepidosaurian (snakes, lizards) and archosaurian (dinosaurs, crocodilians, birds) lines.  相似文献   

17.
1. The synthesis of gamma-glutamylhydroxamate from glutamate and hydroxylamine has been utilized as an approximation of glutamine synthetase activity in kidneys of rabbit, rat, dog, monkey and man. 2. Kidneys of rabbit contain glutamine synthetase in high activity; those of rat, in intermediate activity; and those of dog, monkey and man, in negligible activity. 3. No more enzyme is present in kidneys of the latter two species than in those of the dog, in which the enzyme is generally considered to be absent.  相似文献   

18.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

19.
Glutamine synthetase and glutaminase activities in various hepatoma cells   总被引:4,自引:0,他引:4  
Glutamine synthetase and glutaminase activities in a series of hepatoma cells of human and rat origins were determined for comparison with normal liver tissues. Marked decrease in glutamine synthetase activity was observed in the tumor cells. Phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal liver tissues. Well coupled mitochondria were isolated from HuH 13 line of human hepatoma cells and human liver. Oxypolarographic tests showed that glutamine oxidation was prominent in the tumor mitochondria, while mitochondria from the liver showed a feeble glutamine oxidation. Glutamine oxidation was inhibited by prior incubation of the mitochondria with DON (6-diazo-5-oxo-L-norleucine), which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor mitochondria to supply ATP.  相似文献   

20.
Glutamine synthetase isozymes in elasmobranch brain and liver tissues   总被引:1,自引:0,他引:1  
Glutamine synthetase is present as isozymic forms in the elasmobranchs Squalus acanthias (dogfish shark) and Dasyatis sabina (stingray). Subcellular fractionation of elasmobranch brain and liver tissue shows the enzyme to be predominantly cytosolic in the former tissue and mitochondrial in the latter. For the cytosolic brain enzyme, the subunit Mr equals 42,000 in the stingray and 45,000 in the shark, as determined by sodium dodecyl sulfate-gel electrophoresis/Western blotting. The subunit Mr = 45,000 and 47,000, respectively, for stingray and dogfish mitochondrial liver enzymes. Translation of total brain RNA from both species gives immunoprecipitable nascent peptides of the same size as their respective mature enzymes. However, in liver tissue, translation of glutamine synthetase mRNA yields peptides of higher Mr than that of the mature enzymes. In dogfish liver, Mr = 50,000 for the translation product and, in stingray liver, Mr = 48,000. This suggests that the translocation of the enzyme into liver mitochondria may be via a signal or leader sequence mechanism. The larger liver isozyme of elasmobranch glutamine synthetase is found in kidney where it is also known to be mitochondrial. The smaller cytosolic isozyme occurs in retina, heart, gill, and rectal gland tissue as well as in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号