首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two tetrameric secondary alcohol dehydrogenases (ADHs), one from the mesophile Clostridium beijerinckii (CBADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TBADH), share 75% sequence identity but differ by 26 °C in thermal stability. To explore the role of linear segments of these similar enzymes in maintaining the thermal stability of the thermostable TBADH, a series of 12 CBadh and TBadh chimeric genes and the two parental wild-type genes were expressed in Escherichia coli, and the enzymes were isolated, purified and characterized. The thermal stability of each chimeric enzyme was approximately exponentially proportional to the content of the amino acid sequence of the thermophilic enzyme, indicating that the amino acid residues contributing to the thermal stability of TBADH are distributed along the whole protein molecule. It is suggested that major structural elements of thermal stability may reside among the nine discrepant amino acid residues between the N-terminal 50-amino acid residues of TBADH and CBADH.  相似文献   

2.
Summary Two tetrameric secondary alcohol dehydrogenases (ADHs), one from the mesophileClostridium beijerinckii (CBADH) and the other from the extreme thermophileThermoanaerobacter brockii (TBADH), share 75% sequence identity but differ by 26°C in thermal stability. To explore the role of linear segments of these similar enzymes in maintaining the thermal stability of the thermostable TBADH, a series of 12 CBadh and TBadh chimeric genes and the two parental wild-type genes were expressed inEscherichia coli, and the enzymes were isolated, purified and characterized. The thermal stability of each chimeric enzyme was approximately exponentially proportional to the content of the amino acid sequence of the thermophilic enzyme, indicating that the amino acid residues contributing to the thermal stability of TBADH are distributed along the whole protein molecule. It is suggested that major structural elements of thermal stability may reside among the nine discrepant amino acid residues between the N-terminal 50-amino acid residues of TBADH and CBADH.  相似文献   

3.
A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.  相似文献   

4.
Principles of protein thermostability have been studied by comparing structures of thermostable proteins with mesophilic counterparts that have a high degree of sequence identity. Two tetrameric NADP(H)-dependent alcohol dehydrogenases, one from Clostridium beijerinckii (CBADH) and the other from Thermoanaerobacter brockii (TBADH), having exceptionally high (75%) sequence identity, differ by 30 degrees in their melting temperatures. The crystal structures of CBADH and TBADH in their holo-enzyme form have been determined at a resolution of 2.05 and 2.5 A, respectively. Comparison of these two very similar structures (RMS difference in Calpha = 0.8 A) revealed several features that can account for the higher thermal stability of TBADH. These include additional ion pairs, "charged-neutral" hydrogen bonds, and prolines as well as improved stability of alpha-helices and tighter molecular packing. However, a deeper structural insight, based on the location of stabilizing elements, suggests that enhanced thermal stability of TBADH is due mainly to the strategic placement of structural determinants at positions that strengthen the interface between its subunits. This is also supported by mutational analysis of structural elements at critical locations. Thus, it is the reinforcement of the quaternary structure that is most likely to be a primary factor in preserving enzymatic activity of this oligomeric bacterial ADH at elevated temperatures.  相似文献   

5.
Two primary alcohols (1-butanol and ethanol) are major fermentation products of several clostridial species. In addition to these two alcohols, the secondary alcohol 2-propanol is produced to a concentration of about 100 mM by some strains of Clostridium beijerinckii. An alcohol dehydrogenase (ADH) has been purified to homogeneity from two strains (NRRL B593 and NESTE 255) of 2-propanol-producing C. beijerinckii. When exposed to air, the purified ADH was stable, whereas the partially purified ADH was inactivated. The ADHs from the two strains had similar structural and kinetic properties. Each had a native M(r) of between 90,000 and 100,000 and a subunit M(r) of between 38,000 and 40,000. The ADHs were NADP(H) dependent, but a low level of NAD(+)-linked activity was detected. They were equally active in reducing aldehydes and 2-ketones, but a much lower oxidizing activity was obtained with primary alcohols than with secondary alcohols. The kcat/Km value for the alcohol-forming reaction appears to be a function of the size of the larger alkyl substituent on the carbonyl group. ADH activities measured in the presence of both acetone and butyraldehyde did not exceed activities measured with either substrate present alone, indicating a common active site for both substrates. There was no similarity in the N-terminal amino acid sequence between that of the ADH and those of fungi and several other bacteria. However, the N-terminal sequence had 67% identity with those of two other anaerobes, Thermoanaerobium brockii and Methanobacterium palustre. Furthermore, conserved glycine and tryptophan residues are present in ADHs of these three anaerobic bacteria and ADHs of mammals and green plants.  相似文献   

6.
Mai V  Wiegel J  Lorenz WW 《Gene》2000,247(1-2):137-143
The gene for the bifunctional xylosidase-arabinosidase (xarB) from the thermophilic anaerobe Thermoanaerobacter ethanolicus JW200 was cloned, sequenced, and expressed in Escherichia coli (Genebank Accession No. AF135015). Analysis of the recombinant enzyme revealed activity against multiple substrates with the highest affinity towards p-nitrophenyl beta-D-xylopyranoside (pNPX) and highest activity against p-nitrophenyl alpha-L-arabinopyranoside (pNPAP), respectively. Thus, we classify this enzyme as a bifunctional xylosidase-arabinosidase. Even though both sequences are 96% identical on the amino acid level, excluding the amino-terminal end, a frame-shift mutation in the 5' region of the gene in T. brockii ATCC 33075 and a deletion in a downstream open reading frame in T. ethanolicus seem to have occurred through evolutionary divergence of these two species. This represents an interesting phenomenon of molecular evolution of bacterial species, as PCR analysis of the region around the deletion indicates that the deletion is not present in T. brockii ssp. finnii and T. brockii ssp. brockii type strain HTD4.  相似文献   

7.
Abstract: Alcohol dehydrogenase (ADH) is a key enzyme for the production of butanol, ethanol, and isopropanol by the solvent-producing clostridia. Initial studies of ADH in extracts of several strains of Clostridium acetobutylicum and C. beijerinckii gave conflicting molecular properties. A more coherent picture has emerged because of the following results: (i) identification of ADHs with different coenzyme specificities in these species; (ii) discovery of structurally conserved ADHs (type 3) in three solvent-producing species; (iii) isolation of mutants with deficiencies in butanol production and restoration of butanol production with a cloned alcohol/aldehyde dehydrogenase gene; and (iv) resolution of various ' C. acetobutylicum ' cultures into four species. The three ADH isozymes of C. beijerinckii NRRL B592 have high sequence similarities to ADH-1 of Clostridium sp. NCP 262 (formerly C. acetobutylicum P262) and to the ADH domain of the alcohol/aldehyde dehydrogenase of C. acetobutylicum ATCC 824/DSM 792. The NADH-dependent activity of the ADHs from C. beijerinckii NRRL B592 and the BDHs from C. acetobutylicum ATCC 824 is profoundly affected by the pH of the assay, and the relative importance of NADH and NADPH to butanol production may be misappraised when NAD(P)H-dependent activities were measured at different pH values. The primary/secondary ADH of isopropanol-producing C. beijerinckii is a type-1 enzyme and is highly conserved in Thermoanaerobacter brockii (formerly Thermoanaerobium brockii ) and Entamoeba histolytica . Several solvent-forming enzymes (primary ADH, aldehyde dehydrogenase, and 3-hydroxybutyryl-CoA dehydrogenase) are very similar between C. beijerinckii and the species represented by Clostridium sp. NCP 262 and NRRL B643. The realization of such relationships will facilitate the elucidation of the roles of different ADHs because each type of ADH can now be studied in an organism most amenable to experimental manipulations.  相似文献   

8.
K Inatomi 《DNA research》1998,5(6):365-371
The structural gene, nosZ, for the monomeric N2O reductase has been cloned and sequenced from the denitrifying bacterium Achromobacter cycloclastes. The nosZ gene encodes a protein of 642 amino acid residues and the deduced amino acid sequence showed homology to the previously derived sequences for the dimeric N2O reductases. The relevant DNA region of about 3.6 kbp was also sequenced and found to consist of four genes, nosDFYL based on the similarity with the N2O reduction genes of Pseudomonas stutzeri. The gene product of A. cycloclastes nosF (299 amino acid residues) has a consensus ATP-binding sequence, and the nos Y gene encodes a hydrophobic protein (273 residues) with five transmembrane segments, suggesting the similarity with an ATP-binding cassette (ABC) transporter which has two distinct domains of a highly hydrophobic region and ATP-binding sites. The nosL gene encodes a protein of 193 amino acid residues and the derived sequence showed a consensus sequence of lipoprotein modification/processing site. The expression of nosZ gene in Escherichia coli cells and the comparison of the translated sequences of the nosDFYL genes with those of bacterial transport genes for inorganic ions are discussed.  相似文献   

9.
Two genes, coding for the HincII from Haemophilus influenzae Rc restriction-modification system, were cloned and expressed in Escherichia coli RR1. Their DNA sequences were determined. The HincII methylase (M.HincII) gene was 1,506 base pairs (bp) long, corresponding to a protein of 502 amino acid residues (Mr = 55,330). The HincII endonuclease (R.HincII) gene was 774 bp long, corresponding to a protein of 258 amino acid residues (Mr = 28,490). The amino acid residues predicted from the R.HincII and the N-terminal amino acid sequence of the enzyme found by analysis were identical. These methylase and endonuclease genes overlapped by 1 bp on the H. influenzae Rc chromosomal DNA. The clone, named E. coli RR1-Hinc, overproduced R.HincII. The R.HincII activity of this clone was 1,000-fold that from H. influenzae Rc. The amino acid sequence of M.HincII was compared with the sequences of four other adenine-specific type II methylases. Important homology was found between tne M.HincII and these other methylases.  相似文献   

10.
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated.  相似文献   

11.
12.
The coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH) catalyzes a key reaction in the acetone- and butanol (solvent)-producing clostridia. It reduces acetyl-CoA and butyryl-CoA to the corresponding aldehydes, which are then reduced by alcohol dehydrogenase (ADH) to form ethanol and 1-butanol. The ALDH of Clostridium beijerinckii NRRL B593 was purified. It had no ADH activity, was NAD(H) specific, and was more active with butyraldehyde than with acetaldehyde. The N-terminal amino acid sequence of the purified ALDH was determined. The open reading frame preceding the ctfA gene (encoding a subunit of the solvent-forming CoA transferase) of C. beijerinckii NRRL B593 was identified as the structural gene (ald) for the ALDH. The ald gene encodes a polypeptide of 468 amino acid residues with a calculated M(r) of 51, 353. The position of the ald gene in C. beijerinckii NRRL B593 corresponded to that of the aad/adhE gene (encoding an aldehyde-alcohol dehydrogenase) of Clostridium acetobutylicum ATCC 824 and DSM 792. In Southern analyses, a probe derived from the C. acetobutylicum aad/adhE gene did not hybridize to restriction fragments of the genomic DNAs of C. beijerinckii and two other species of solvent-producing clostridia. In contrast, a probe derived from the C. beijerinckii ald gene hybridized to restriction fragments of the genomic DNA of three solvent-producing species but not to those of C. acetobutylicum, indicating a key difference among the solvent-producing clostridia. The amino acid sequence of the ALDH of C. beijerinckii NRRL B593 was most similar (41% identity) to those of the eutE gene products (CoA-acylating ALDHs) of Salmonella typhimurium and Escherichia coli, whereas it was about 26% identical to the ALDH domain of the aldehyde-alcohol dehydrogenases of C. acetobutylicum, E. coli, Lactococcus lactis, and amitochondriate protozoa. The predicted secondary structure of the C. beijerinckii ALDH suggests the presence of an atypical Rossmann fold for NAD(+) binding. A comparison of the proposed catalytic pockets of the CoA-dependent and CoA-independent ALDHs identified 6 amino acids that may contribute to interaction with CoA.  相似文献   

13.
Separate proteins for proton-linked transport of D-xylose, L-arabinose, D-galactose, L-rhamnose and L-fucose into Escherichia coli are being studied. By cloning and sequencing the appropriate genes, the amino acid sequences of proteins for D-xylose/H+ symport (XylE), L-arabinose/H+ symport (AraE), and part of the protein for D-galactose/H+ symport (GalP) have been determined. These are homologous, with at least 28% identical amino acid residues conserved in the aligned sequences, although their primary sequences are not similar to those of other E. coli transport proteins for lactose, melibiose, or D-glucose. However, they are equally homologous to the passive D-glucose transport proteins from yeast, rat brain, rat adipocytes, human erythrocytes, human liver, and a human hepatoma cell line. The substrate specificity of GalP from E. coli is similar to that of the mammalian glucose transporters. Furthermore, the activities of GalP, AraE and the mammalian glucose transporters are all inhibited by cytochalasin B and N-ethylmaleimide. Conserved residues in the aligned sequences of the bacterial and mammalian transporters are identified, and the possible roles of some in sugar binding, cation binding, cytochalasin binding, and reaction with N-ethylmaleimide are discussed. Each protein is independently predicted to form 12 hydrophobic, membrane-spanning alpha-helices with a central hydrophilic segment, also comprised of alpha-helix. This unifying structural model of the sugar transporters shares features with other ion-linked transport proteins for citrate or tetracycline.  相似文献   

14.
Alanine racemase genes (alr) from Shigella dysenteriae, Shigella boydii, Shigella flexneri, and Shigella sonnei were cloned and expressed in Escherichia coli JM109. All genes encoded a polypeptide of 359 amino acids, and showed more than 99% sequence identities with each other. In particular, the S. dysenteriae alr was identical with the S. flexneri alr. Differences in the amino acid sequences between the four Shigella enzymes were only two residues: Gly138 in S. dysenteriae and S. flexneri (Glu138 in the other) and Ile225 in S. sonnei (Thr225 in the other). The S. boydii enzyme was identical with the E. coli K12 alr enzyme. Each Shigella alr enzyme purified to homogeneity has an apparent molecular mass about 43,000 by SDS-gel electrophoresis, and about 46,000 by gel filtration. However, all enzymes showed an apparent molecular mass about 60,000 by gel filtration in the presence of a substrate, 0.1 M l-alanine. These results suggest that the Shigella alr enzymes having an ordinary monomeric structure interact with other monomer in the presence of the substrate. The enzymes were almost identical in the enzymological properties, and showed lower catalytic activities (about 210 units/mg) than those of homodimeric alanine racemases reported.  相似文献   

15.
BLAT (BLAST-Like Alignment Tool) analyses and interrogations of the recently published opossum genome were undertaken using previously reported rat ADH amino acid sequences. Evidence is presented for six opossum ADH genes localized on chromosome 5 and organized in a comparable ADH gene cluster to that reported for human and rat ADH genes. The predicted amino acid sequences and secondary structures for the opossum ADH subunits and the intron-exon boundaries for opossum ADH genes showed a high degree of similarity with other mammalian ADHs, and four opossum ADH classes were identified, namely ADH1, ADH3, ADH6 and ADH4 (for which three genes were observed: ADH4A, ADH4B and ADH4C). Previous biochemical analyses of opossum ADHs have reported the tissue distribution and properties for these enzymes: ADH1, the major liver enzyme; ADH3, widely distributed in opossum tissues with similar kinetic properties to mammalian class 3 ADHs; and ADH4, for which several forms were localized in extrahepatic tissues, especially in the digestive system and in the eye. These ADHs are likely to perform similar functions to those reported for other mammalian ADHs in the metabolism of ingested and endogenous alcohols and aldehydes. Phylogenetic analyses examined opossum, human, rat, chicken and cod ADHs, and supported the proposed designation of opossum ADHs as class I (ADH1), class III (ADH3), class IV (ADH4A, ADH4B and ADH4C) and class VI (ADH6). Percentage substitution rates were examined for ADHs during vertebrate evolution which indicated that ADH3 is evolving at a much slower rate to that of the other ADH classes.  相似文献   

16.
Analysis of the three-dimensional structures of three closely related mesophilic, thermophilic, and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Clostridium beijerinckii (CbADH), Entamoeba histolytica (EhADH1), and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro100) might be crucial for maintaining the thermal stability of EhADH1. To determine whether proline substitution at this position in TbADH and CbADH would affect thermal stability, we used site-directed mutagenesis to replace the complementary residues in both enzymes with proline. The results showed that replacing Gln100 with proline significantly enhanced the thermal stability of the mesophilic ADH: DeltaT(1/2) (60 min) = + 8 degrees C (temperature of 50% inactivation after incubation for 60 min), DeltaT(1/2) (CD) = +11.5 degrees C (temperature at which 50% of the original CD signal at 218 nm is lost upon heating between 30 degrees and 98 degrees C). A His100 --> Pro substitution in the thermophilic TbADH had no effect on its thermostability. An analysis of the three-dimensional structure of the crystallized thermostable mutant Q100P-CbADH suggested that the proline residue at position 100 stabilized the enzyme by reinforcing hydrophobic interactions and by reducing the flexibility of a loop at this strategic region.  相似文献   

17.
A gene encoding a trehalose phosphorylase was cloned from Thermoanaerobacter brockii ATCC 35047. The gene encodes a polypeptide of 774 amino acid residues. The deduced amino acid sequence was homologous to bacterial maltose phosphorylases and a trehalose 6-phosphate phosphorylase catalyzing anomer-inverting reactions. On the other hand, no homology was found between the T. brockii enzyme and an anomer-retaining trehalose phosphorylase from Grifola frondosa.  相似文献   

18.
The genes for the acetate-activating enzymes, acetate kinase and phosphotransacetylase (ack and pta), from Methanosarcina thermophila TM-1 were cloned and sequenced. Both genes are present in only one copy per genome, with the pta gene adjacent to and upstream of the ack gene. Consensus archaeal promoter sequences are found upstream of the pta coding region. The pta and ack genes encode predicted polypeptides with molecular masses of 35,198 and 44,482 Da, respectively. A hydropathy plot of the deduced phosphotransacetylase sequence indicates that it is a hydrophobic polypeptides; however, no membrane-spanning domains are evident. Comparison of the amino acid sequences deduced from the M. thermophila and Escherichia coli ack genes indicate similar subunit molecular weights and 44% identity (60% similarity). The comparison also revealed the presence of several conserved arginine, cysteine, and glutamic acid residues. Arginine, cysteine, and glutamic acid residues have previously been implicated at or near the active site of the E. coli acetate kinase. The pta and ack genes were hyperexpressed in E. coli, and the overproduced enzymes were purified to homogeneity with specific activities higher than those of the enzymes previously purified from M. thermophila. The overproduced phosphotransacetylase and acetate kinase migrated at molecular masses of 37,000 and 42,000 Da, respectively. The activity of the acetate kinase is optimal at 65 degrees C and is protected from thermal inactivation by ATP. Diethylpyrocarbonate and phenylglyoxal inhibited acetate kinase activity in a manner consistent with the presence of histidine and arginine residues at or near the active site; however, the thiol-directed reagents 5,5'-dithiobis (2-nitrobenzoic acid) and N-ethylmaleimide were ineffective.  相似文献   

19.
The amino-terminal amino acid sequences of the pili proteins from four antigenically dissimilar strains of Neisseria gonorrhoeae, from Neisseria meningiditis, and from Escherichia coli were determined. Although antibodies raised to the pili protein from a given strain of gonococcus cross-reacted poorly or not at all with each of the other strains tested, the amino-terminal sequences were all identical. The meningococcal protein sequence was also identical with the gonococcal sequence through 29 residues, and this sequence was highly homologous to the sequence of the pili protein of Moraxella nonliquifaciens determined by other workers. However, the sequence of the pili protein from E. coli showed no similarity to the other sequences. The gonococcal and meningococcal proteins have an unusual amino acid at the amino termini, N-methylphenylalanine. In addition, the first 24 residues of these proteins have only two hydrophilic residues (at positions 2 and 5) with the rest being predominantly aliphatic hydrophobic amino acids. The preservation of this highly unusual sequence among five antigenically dissimilar Neisseria pili proteins implies a role for the amino-terminal structure in pilus function. The amino terminus may be directly or indirectly (through preservation of tertiary structure) important for the pilus function of facilitating attachment of bacteria to human cells.  相似文献   

20.
mop is the structural gene for the molybdenum-pterin binding protein, which is the major molybdenum binding protein in Clostridium pastuerianum. The mop gene was detected by immunoscreening genomic libraries of C. pastuerianum and identified by determining the nucleotide sequence of the cloned insert of clostridial DNA. The deduced amino acid sequence of an open reading frame proved to be identical to the first twelve residues of purified Mop. The DNA sequence flanking the mop gene contains promoter-like consensus sequences which are probably responsible for the expression of Mop in Escherichia coli. The deduced amino acid composition shows that the protein is hydrophobic, lacks aromatic and cysteine residues and has a calculated molecular weight of 7,038. The N-terminal amino acid sequence of Mop has sequence homology with DNA binding proteins. The pattern and type of residues in the N-terminal region suggest it forms the helix-turn-helix structure observed in DNA binding proteins. We propose that Mop may be a regulatory protein binding the anabolic source of molybdenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号