首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In previous research here, 3,5-diiodo-4-hydroxybenzoic acid (DIHB) was shown to promote the elongation of roots of cress (Lepidium sativum) seedlings growing in light, and to inhibit the auxin-induced production of ethylene in this tissue. Although DIHB is a cofactor for the oxidation of indole-3-acetic acid (IAA) by horse-radish peroxidase, it inhibits the decarboxylation of [1-14C]IAA by segments excised from cress roots. The inhibition by DIHB of ethylene production by this tissue does not, therefore, arise from a reduction of IAA levels. These findings are discussed in relation to the effects of DIHB on cress root growth.Abbreviations IAA indole-3-acetic acid - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DCP 2,4-dichlorophenol - 2,4-D 2,4-dichlorophenoxyacetic acid This study forms part of a research project to be submitted by M.L.R. for PhD degree and supported by a grant from Consejo Nacional de Ciencia y Tecnología (México).  相似文献   

2.
3,5-Dihalo-4-hydroxybenzoic acids enhanced adventitious root formation in mung bean (Vigna radiata L.) cuttings. 3,5-Diiodo-4-hydroxybenzoic acid was more active than 3,5-dichloro-4-hydroxybenzoic acid, increasing the number of roots formed by about 4-fold. 2,4-Dinitrophenol also enhanced significantly adventitious root formation in mung bean cuttings. The phenolic compounds were active with or without indole-3-acetic acid. The possible mechanism by which these phenolic compounds enhance rooting is discussed.Abbreviations CCCP carbonyl cyanide 3-chlorophenylhydrazone - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DNP 2,4-dinitrophenol  相似文献   

3.
Seedling establishment in heavily compact soils is hampered by poor root growth caused by soil chemical or physical factors. This study aims to determine the role of ethylene in regulating root elongation through mechanically impeded sandy soils using Eucalyptus todtiana F. Muell seedlings. Concentrations of ethephon (1, 10, and 100???M) were added to non-compact soils, and endogenous ethylene production from seedling roots was compared to ethylene production of roots grown in physically compacted field soils (98.6?% sand). The ethylene-inhibitor 3,5-diiodo-4-hydroxybenzoic acid (DIHB) (0.1???M) was included for each treatment to counteract the negative effects of excess ethylene or compact soils on root elongation. Root elongation was reduced in high ethylene soils by 49?% and high bulk density soils by 44?%. Root ethylene production increased ninefold in roots grown in the high ethylene environment (100???M), but decreased 80?% in compact soils. The use of DIHB did not alter root length and produced varying results with respect to ethylene production, suggesting an interaction effect involving high amounts of soil ethylene. While ethylene regulates root growth, the physical strength of sandy soils is the major factor limiting root elongation in mechanically impeded soils.  相似文献   

4.
The apical 2 cm of seedling roots of oilseed rape (Brassica napus L., cv. Primor) produced more ethylene than adjacent, older tissue. Treatment with 5 × 10–3 mol m–3 3,5-diiodo4-hydroxybenzoic acid (DIHB), a presumed inhibitor of ethylene action, failed to stimulate root extension. Larger concentrations were inhibitory. Ethylene, applied as ethephon decreased root extension but DIHB (5 × 10–3 mol m–3) partially overcame this effect. Oxygen concentrations below that present in air also inhibited root extension but this was not ameliorated by DIHB.Roots of barley seedlings (Hordeum vulgare L., cv. Midas) evolved ethylene more slowly than roots of oilseed rape. DIHB (10–3–10–2 mol m–3) stimulated root extension in the absence of ethephon. Ethephon alone retarded root extension but DIHB partially overcame this inhibition. Small concentrations of oxygen also inhibited root extension but DIHB failed to ameliorate the effect even though the slow growth of oxygen-deficient roots (3–5% oxygen) was associated with abnormally fast rates of endogenous ethylene production.Extension growth in different oxygen concentrations was more closely associated with rates of oxygen consumption than with the amount of ethylene produced. Thus respiration rather than ethylene appeared to limit root extension under oxygen deficiency. This may explain why DIHB was unable to offset this form of environmental stress.  相似文献   

5.
An explanation is sought for the inhibition of maize root growth and gravireaction brought about by treatment with 3,5-diiodo-4-hydroxybenzoic acid (DIHB). The effects of DIHB and 2,3,5-triiodobenzoic acid (TIBA) on the uptake and efflux of [3H]-indol-3yl-acetic acid (IAA) were tested using segments prepared from the elongation zone (2 to 7 mm region) of maize (Zea mays L. cv. LG11) roots. The uptake of [3H]-IAA (21 nM) by root segments incubated in buffered solutions (pH 5.0) was measured over a 5-min time-course. No significant effect of DIHB at 100 μM was observed, whereas TIBA at 10 μM slightly stimulated the uptake of [3H]-IAA. This experiment was repeated with the addition of non-radioactive IAA (total IAA concentration 1.0 μM). Up to 3 min DIHB (100 μM) had no significant effect, but thereafter a slight stimulation of IAA net uptake was observed. Treatment with TIBA (10 μM) stimulated the accumulation of IAA in the segments. The effects of DIHB (10, 50, 100 μM) and TIBA (10 and 50 μM) on the efflux of [3H]-IAA from segments that had been pretreated in [3H]-IAA (22 nM) were then tested. Treatment with DIHB or TIBA at pH 5.0 inhibited IAA efflux; the inhibition by TIBA was more marked than that produced by DIHB. This experiment was repeated using DIHB (10, 50, 100 μM) buffered at pH 6.0, and an inhibition of IAA efflux was again observed. Both DIHB (10 μM) and TIBA (10 μM) inhibited the binding of [3H]-NPA to a 5000–48000 g membrane fraction prepared from whole maize roots. The effects of the two substances were similar: 40% inhibition of specific binding by DIHB and 41% inhibition by TIBA. This indicates that DIHB, like TIBA, binds to the N-1-naphthyl-phthalamic acid-sensitive carrier for IAA efflux. It is concluded that DIHB, like TIBA, inhibits IAA transport at the level of efflux. The similarity between DIHB and TIBA as regards chemical structure and their inhibitory effects on IAA efflux and NPA binding strongly suggest that they act on the same carrier for IAA efflux across the plasmalemma.  相似文献   

6.
Brassinosteroids have been reported to accelerate plant growth when applied to seeds. We examined the effects of seed treatment with brassinolide on early growth of Lepidium sativum (cress). Submicromolar and micromolar concentrations of brassinolide inhibited root growth within 48 h after seed treatment. Germination of cress was not affected by brassinolide. The inhibition of cress root growth by brassinolide was time specific in terms of eliciting the response. Untreated germinated seeds transferred to filter paper moistened with brassinolide solution did not exhibit the same level of root inhibition as treated seeds. Brassinolide (2 m) had no effect on ethylene levels, suggesting that at this concentration brassinolide is acting independently of ethylene to inhibit cress root elongation. Also, brassinolide had no effect on DNA synthesis within 24 h after seed treatment, but synthesis was reduced after 48 h. The results of this study illustrate a significant specific effect on very early cress root growth by seed treatment with brassinolide.Abbreviations BR brassinosteroid(s) - SDS sodium dodecyl sulfate - TCA trichloroacetic acid - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

7.
Ethylene as a possible mediator of light-induced inhibition of root growth   总被引:1,自引:0,他引:1  
Eliasson, L. and Bollmark, M. 1988. Ethylene as a possible mediator of light-induced inhibition of root growth. - Physiol. Plant. 72: 605–609.
Pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the possible role of ethylene in light-induced inhibition of root elongation. Illumination of the roots with white light inhibited root elongation by 40–50% and increased ethylene production by the roots about 4-fold. Our main approach was to use exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), supplied in the growth solution, to monitor ethylene production of the roots independent of light treatment. Ethylene production of excised root tips increased with increasing ACC concentrations. The rate of ethylene production in dark-grown roots treated with 0.1 μ M ACC was similar to that caused by illumination. Low ACC concentrations (0.01–0.1 μ M ) decreased the rate of root elongation, especially in seedlings grown in the dark, and 0.1 μ M ACC inhibited elongation to about the same extent as light. In light the roots curved and grew partly plagiogravitropically. This effect was also simulated by the 0.1 μ M ACC treatment. At 1 μ M and higher concentrations, ACC inhibited root growth almost completely and caused conspicuous curvatures of the root tips both in light and darkness. Inhibitors of ethylene synthesis and action partially counteracted the inhibition of root elongation caused by light. These observations suggest that the increase in ethylene production caused by light is at least partly responsible for the decreased growth of light-exposed roots.  相似文献   

8.
A search for growth inhibitors in rice root exudates was undertaken in order to clarify the allelopathic system in rice ( Oryza sativa L.). Rice seedlings inhibited the growth of cress ( Lepidium sativum L.) and lettuce ( Lactuca sativa L.) seedlings when the cress and lettuce were grown with rice seedlings. The putative compound causing the inhibitory effect of rice seedlings was isolated from their culture solution, and the chemical structure of the inhibitor was determined by spectral data as momilactone B. Momilactone B inhibited the growth of cress and lettuce seedlings at concentrations greater than 3 and 30 µ M , respectively. The concentration of momilactone B was 3.4 and 1.1 nmol per seedling in the culture solutions of husked and non-husked rice seedlings, respectively. These results suggest that rice seedlings may release momilactone B into the environment and the stress caused by the husk-treatment may increase the amount of momilactone B released. Thus, momilactone B may play an important role in rice allelopathy.  相似文献   

9.
Abstract. A system is described whereby seedling development can be analysed in terms of growth rates of specific 1 mm regions of the hypocotyl. The technique involves time-lapse photography of marked hypocotyls in a specially designed chamber which accommodates seedlings in various orientations with respect to gravity, and under irradiation regimes differing in light quality, quantity and direction. The results of a preliminary study of the upward growth of etiolated or green cress seedlings in darkness or overhead while light are reported. Highest growth rates in etiolated seedlings were observed in zones in the upper one-third of ihe hypocotyl. In green seedlings, growth was more prominent within the subapical zones. Light further restricted growth of the median and basal zones in both types of seedling. However, in their immediate responses to the onset of irradiation, green and etiolated seedlings differed markedly. In etiolated seedlings, recovery of growth at the apex was accompanied by the development of inhibition in the median-basal regions; green seedlings showed a transient inhibition of growth in the apical zone together with a strong immediate inhibition in the median-basal regions.  相似文献   

10.
Analysis of growth during phototropic curvature of cress hypocotyls   总被引:3,自引:3,他引:0  
Abstract. Growth rates throughout an organ curving phototropically under continuous, unilateral while light were monitored by lime-lapse photography of cress hypocotyls marked into 1 mm sections by two rows of ion-exchange beads. Curvature resulted from an integrated sequence of changes in growth rate on each side of the organ, but the actual patterns of change and, therefore rales of curvature, differed within even this one species, depending upon the immediate pretreatment of the seedlings. Transference of seedlings from darkness to unilateral irradiation gave immediate growth inhibition on both sides of the organ. Curvature resulted from differential recovery of growth rate, being seen first on the shaded side, most prominently in the apical regions; only 2h after initial exposure to light did growth recover on the lit (lower) side. On the other hand, transfer of seedlings from omnilateral to unilateral irradiation of the same intensity resulted in simultaneous growth inhibition on the irradiated side and stimulated growth on the shaded side: this growth stimulation of the shaded side was greater than occurred in totally darkened control plants.  相似文献   

11.
Light inhibits root elongation, increases ethylene production and enhances the inhibitory action of auxins on root elongation of pea ( Pisum sativum L. cv. Weibulls Marma) seedlings. To investigate the role of ethylene in the interaction between light and auxin, the level of ethylene production in darkness was increased to the level produced in light by supplying 1-aminocyclopropane-1-carboxylic acid (ACC) or benzylaminopurine (BAP). Ethylene production was measured in excised root tips after treatment of intact seedlings for 24 h, while root growth was measured after 48 h. Auxin, at a concentration causing a partial inhibition of root elongation, did not increase ethylene production significantly. A 4-fold increase in ethylene production, caused either by light, 0.1 μ M ACC or 0.1 μ M BAP, inhibited root elongation by 40–50%. The auxins 2,4-dichlorophenoxyacetic acid and indolebutyric acid applied at 0.1 μ M inhibited root elongation by 15–25% in darkness but by 50–60% in light. Supply of ACC or BAP in darkness enhanced the inhibitory effects of auxins to about the same extent as in light. The inhibition caused by the auxins as well as by the BAP was associated with swelling of the root tips. ACC and BAP treatment synergistically increased the swelling caused by auxins. We conclude that auxin and ethylene, when applied or produced in partially inhibitory concentrations, act synergistically to inhibit root elongation and increase root diameter. The effect of light on the response of the roots to auxins is mediated by a light-induced increase in ethylene production.  相似文献   

12.
Using Avena sativa L. cv. Victory oat seedlings and excised p-1 stem segments (including the p-1 and p-2 internodes) the effect of exogenously supplied ethylene and the removal of ethylene on internodal extension and gravitropic bending was assessed. Similarly, the ability of the excised system to respond to gravistimulation was assessed in the presence of inhibitors of ethylene action (AgNO3) and ethylene synthesis (3,5-diiodo-4-hydroxybenzoic acid and benzyl isothiocyanate; BITC). The production of ethylene from both intact and excised systems was also measured from 0 to 48 h after gravistimulation, relative to vertical controls. Although gravitropic curvature is initiated, and indeed enters the most rapid phase of upward bending during the first 6 h, there is no difference in ethylene production between vertical and geostimulated plants during this period. The ethylene production of gravistimulated plants rises sharply to a maximum at 24 h, then decreases steeply to almost the control level by 48 h, at which time the rate of upward curvature is diminishing. Neither the addition nor removal of ethylene, nor the addition of inhibitors affecting ethylene-action (AgNO3) or synthesis (DIHB) influence gravitropic bending or internodal extension in excised segments. Although the ethylene synthesis inhibitor BITC showed down the rate of upward bending, this effect could not be reversed by addition of ethylene. We conclude that the burst in ethylene production that develops in leaf-sheath bases (pulvini) after they have started to curve upwards is not primary to the induction of curvature. We further suggest that ethylene has no major effect or role in the induction of upward bending after gravistimulation. The metabolism of high specific activity gibberellin A1 ([3H]-GA1) in the excised system was assessed during 1, 2 and 4 h of gravistimulation. Changes in endogenous GAs and GA metabolism have been shown previously to be correlated (at the later stages) with gravistimulated bending in intact Avena shoots. The excised segments ‘leaked’ free [3H]-GAs and [3H]-GA glucosyl conjugate-like substances into the bathing medium, and this was a confounding factor. Nevertheless, gravistimulated stem segments, and especially the bottom half of the segment, were significantly less leaky then vertical segments. Thus, just 1 h after gravistimulation, bottom segment halves retained 22% more precursor [3H]-GA1, 36% more free [3H]-GA-like metabolites, and 48% more [3H]-GA glucosyl conjugate-like metabolites than vertical segments. In contrast, the 1 h gravistimulated top halves retained slightly less (1–4%) precursor [3H]-GA and free [3H]-GA metabolites, but 21% more [3H]-GA glucosyl conjugate-like radioactivity than vertical segments.  相似文献   

13.
Analysis of growth during light-induced hook opening in cress   总被引:1,自引:1,他引:0  
Abstract. Growth in various regions of the hypocotyls of dark-grown cress seedlings before and after exposure lo continuous white light has been analysed by time-lapse photography. In the dark, growth in the hook was minimal, the upward growth of the seedling being sustained by extension of the shank, especially the uppermost zones. Following irradiation, the hook and the remainder of the hypocotyl showed dissimilar growth responses. Previously growing regions of the shank were inhibited while zones within the hook, especially the apical end of the inner (concave) side, showed marked growth stimulation. These changes in growth rates commenced within 1 h from exposure to the light stimulus and thus considerably preceded any observable changes in hook angle.  相似文献   

14.
Madhaiyan M  Poonguzhali S  Ryu J  Sa T 《Planta》2006,224(2):268-278
We report the presence of ACC deaminase in Methylobacterium fujisawaense and its lowering of ethylene levels and promotion of root elongation in canola seedlings under gnotobiotic conditions. To test a part of the previous model proposed for ACC deaminase producing bacteria with Methylobacterium, ACC levels and various enzyme activities were monitored in canola. Lower amounts of ACC were present in the tissues of seeds treated with M. fujisawaense strains than in control seeds treated with MgSO4. Though the increased activities of ACC synthase in the tissue extracts of the treated seedlings might be due to bacterial indole-3-acetic acid, the amount of ACC was reduced due to bacterial ACC deaminase activity. The activities of ACC oxidase, the enzyme catalyzing conversion of ACC to ethylene remained lower in M. fujisawaense treated seedlings. This consequently lowered the ethylene in plants and prevented ethylene inhibition of root elongation. Our results collectively suggest that Methylobacterium commonly found in soils, as well as on the surfaces of leaves, seeds, and in the rhizosphere of a wide variety of plants could be better exploited to promote plant growth.  相似文献   

15.
The effects of gibberellic acid (GA3), potassium nitrate (KNO3), prechilling, temperature, salt stress and osmotic potential on seed germination and sowing depth on seedling emergence and burial depth on seed viability of hoary cress (Cardaria draba (L.) Desv.), were studied in a series of laboratory, glasshouse and outdoor experiments. The optimal temperature for hoary cress seed germination was 20°C, both in light/dark and darkness regimes. Seed germination of hoary cress at 400 ppm concentration of GA3 in a light/dark regime was maximal. Potassium nitrate concentrations increased the percentage of germination in comparison with the control treatment. Increasing the duration of dry prechilling to 30 and 45 days promoted the seed germination of hoary cress. Germination of hoary cress markedly decreased as salt and drought stress increased. Seed germination of hoary cress occurred at a range of pH from 3 to 11. Seedling emergence significantly decreased as planting depth increased. Total seed viability decreased with increasing burial depth. The maximum increase in mortality occurred in seeds that were buried at 5‐cm depth.  相似文献   

16.
Root hair development is orchestrated by nutritional factors and plant hormones. We investigated the action of ammonium (NH4+) and its interactions with methyl jasmonate (MeJA) and ethylene in Arabidopsis root hair growth. The formation of root hair branches was dramatically stimulated in media containing 1.25 to 20 mM NH4+ at pH values of 4.0 to 6.5. The NH4+-treated root hairs showed a very short tip growth stage and swells on the sides that indicated the emergence of branches. MeJA (0.08 to 10 μM) worked in synergism with NH4+ to enhance hair branching. In contrast, ethylene had an antagonistic effect; the stimulation of hair branching by NH4+ was suppressed by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and was diminished in ethylene-overproducing mutant eto1-1 seedlings. Moreover, the application of Ag+, an ethylene inhibitor, reduced the ACC-induced inhibition of NH4+-stimulated hair branching and restored NH4+-stimulated hair branching in eto1-1 seedlings. Thus, the actions of jasmonate and ethylene appear to be dependent on nutritional conditions such as available nitrogen.  相似文献   

17.
Seedlings of Norway spruce (Picea abies L.) have been found to synthesize anthocyanins in the root tips as well as in the hypocotyls upon irradiation with white light when kept at 4°C for 6–8 days. In addition, it has also been found that the elongation and the geotropic curvature of spruce roots are dependent on the light conditions. The course of the geotropic curvature in spruce roots containing anthocyanins has been followed during a period of 5 h, in which the seedlings were geotropically stimulated continuously in the horizontal position. When the stimulation was performed in white light and in darkness at 21°C, significantly larger curvatures were observed in the roots pretreated at 4°C in darkness than in the roots containing anthocyanins. The specific curvature (curvature in degrees per mm elongation), however, was approximately the same in both types of roots stimulated in white light. This was due to a retarded elongation of the roots pretreated with light at 4°C and containing anthocyanins. A smaller difference in elongation rate between roots with and without anthocyanins was observed in the dark than in the light, but even in the dark the anthocyanin-containing roots grew more slowly than roots without anthocyanins. In order to find out if it is the anthocyanin content or the illumination which affects the elongation and geotropic curvature in the roots, a series of similar experiments was performed using cress seedlings grown at 4°C in light or darkness. Roots of cress seedlings cultivated under conditions which would induce anthocyanin formation in spruce roots exhibited the highest geotropic responses both in light and darkness as compared to cress seedlings grown at 4°C in darkness. As in the case of spruce roots an increase in elongation was observed in cress roots illuminated during the geotropic stimulation. These similarities in the behaviour made it relevant to compare the development of the geotropic curvature in cress and spruce roots.  相似文献   

18.
Kutschera U  Briggs WR 《Planta》2012,235(3):443-452
In roots, the “hidden half” of all land plants, gravity is an important signal that determines the direction of growth in the soil. Hence, positive gravitropism has been studied in detail. However, since the 19th century, the response of roots toward unilateral light has also been analyzed. Based on studies on white mustard (Sinapis alba) seedlings, botanists have concluded that all roots are negatively phototropic. This “Sinapis-dogma” was refuted in a seminal study on root phototropism published a century ago, where it was shown that less then half of the 166 plant species investigated behave like S. alba, whereas 53% displayed no phototropic response at all. Here we summarize the history of research on root phototropism, discuss this phenomenon with reference to unpublished data on garden cress (Lepidium sativum) seedlings, and describe the effects of blue light on the negative bending response in Thale cress (Arabidopsis thaliana). The ecological significance of root phototropism is discussed and the relationships between gravi- and phototropism are outlined, with respect to the starch-statolith-theory of gravity perception. Finally, we present an integrative model of gravi- and blue light perception in the root tip of Arabidopsis seedlings. This hypothesis is based on our current view of the starch-statolith-concept and light sensing via the cytoplasmic red/blue light photoreceptor phytochrome A and the plasma membrane-associated blue light receptor phototropin-1. Open questions and possible research agendas for the future are summarized.  相似文献   

19.
A plant growth inhibitor was isolated from blue light-illuminated cressseedlings and identified as 4-hydroxy-2,3-dimethyl-2-nonen-4-olide from1H and 13C NMR and ESI-MS spectra. It inhibited thehypocotyl growth of cress seedlings at concentrations higher than 100M.  相似文献   

20.
The promotion of root growth by capillarol [methyl 3-(3-methylbut-2-enoyl)-4-hydroxycinnamate] and related phenolic compounds were studied in relation to structure-activity relationships. Concentrations above 5 × 10−5 M capillarol stimulated the root growth of rice ( Oryza sativa L. cv. Tanginbozu and cv. Nihonbare) seedlings to about 180% of the control value at 5 × 10−4 M . Capillarol had no promotive and hardly any inhibitory effect on the growth of the second leaf sheath. Capillarol promoted the root growth also in seedlings of lettuce ( Lactuca sativa L. cv. Grand Rapids) to ca 150% of the control value at 5 × 10−4 M . The free acid form of capillarol (capillaric acid) was about as effective as capillarol. Para -hydroxy- but not m -methoxy- substituted cinnamic acid, phenylpyruvic acid, phenylacetic acid and amino-hydrocinnamic acid could stimulate root growth, but p -hydroxybenzoic acid was inactive. It is concluded that the important structural requirements for high root growth-promoting activity of phenolic compounds are the hydroxyl group substitution at the C-4 position of the benzene ring, and the propanoic or propenoic acid side chain at the C-1 position. A possible mode of the action of capillarol on root growth-promoting activity is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号