首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel enterotoxin gene was cloned from Bacillus cereus FM1, and its nucleotide sequence was determined. Previously, a 45-kDa protein causing characteristic enterotoxin symptoms in higher animals had been isolated (K. Shinagawa, p. 181-193, in A. E. Pohland et al., ed., Microbial Toxins in Foods and Feeds, 1990) from the same B. cereus strain, but no report of cloning of the enterotoxin gene has been published. In the present study, a specific antibody to the purified enterotoxin was produced and used to screen the genomic library of B. cereus FM1 made with the lambda gt11 vector. An immunologically positive clone was found to contain the full protein-coding region and some 5' and 3' flanking regions. The deduced amino acid sequence of the cloned gene indicated that the protein is rich in beta structures and contains some unusual sequences, such as consecutive Asn residues. In order to clone enterotoxin genes from Bacillus thuringiensis, two PCR primers were synthesized based on the nucleotide sequence of the B. cereus gene. These primers were designed to amplify the full protein-coding region. PCR conducted with DNA preparations from the B. thuringiensis subsp. sotto and B. thuringiensis subsp. israelensis strains successfully amplified a segment of DNA with a size almost identical to that of the protein-coding region of the B. cereus enterotoxin. Nucleotide sequences of the amplified DNA segments showed that these B. thuringiensis strains contain an enterotoxin gene very similar to that of B. cereus. Further PCR screening of additional B. thuringiensis strains with four primer pairs in one reaction revealed that some additional B. thuringiensis strains contain enterotoxin-like genes.  相似文献   

2.
We set out to analyze the sequence diversity of the Bacillus thuringiensis flagellin (H antigen [Hag]) protein and compare it with H serotype diversity. Some other Bacillus cereus sensu lato species and strains were added for comparison. The internal sequences of the flagellin (hag) alleles from 80 Bacillus thuringiensis strains and 16 strains from the B. cereus sensu lato group were amplified and cloned, and their nucleotide sequences were determined and translated into amino acids. The flagellin allele nucleotide sequences for 10 additional strains were retrieved from GenBank for a total of 106 Bacillus species and strains used in this study. These included 82 B. thuringiensis strains from 67 H serotypes, 5 B. cereus strains, 3 Bacillus anthracis strains, 3 Bacillus mycoides strains, 11 Bacillus weihenstephanensis strains, 1 Bacillus halodurans strain, and 1 Bacillus subtilis strain. The first 111 and the last 66 amino acids were conserved. They were referred to as the C1 and C2 regions, respectively. The central region, however, was highly variable and is referred to as the V region. Two bootstrapped neighbor-joining trees were generated: a first one from the alignment of the translated amino acid sequences of the amplified internal sequences of the hag alleles and a second one from the alignment of the V region amino acid sequences, respectively. Of the eight clusters revealed in the tree inferred from the entire C1-V-C2 region amino acid sequences, seven were present in corresponding clusters in the tree inferred from the V region amino acid sequences. With regard to B. thuringiensis, in most cases, different serovars had different flagellin amino acid sequences, as might have been expected. Surprisingly, however, some different B. thuringiensis serovars shared identical flagellin amino acid sequences. Likewise, serovars from the same H serotypes were most often found clustered together, with exceptions. Indeed, some serovars from the same H serotype carried flagellins with sufficiently different amino acid sequences as to be located on distant clusters. Species-wise, B. halodurans, B. subtilis, and B. anthracis formed specific branches, whereas the other four species, all in the B. cereus sensu lato group, B. mycoides, B. weihenstephanensis, B. cereus, and B. thuringiensis, did not form four specific clusters as might have been expected. Rather, strains from any of these four species were placed side by side with strains from the other species. In the B. cereus sensu lato group, B. anthracis excepted, the distribution of strains was not species specific.  相似文献   

3.
Characterization of Bacillus probiotics available for human use   总被引:4,自引:0,他引:4  
Bacillus species (Bacillus cereus, Bacillus clausii, Bacillus pumilus) carried in five commercial probiotic products consisting of bacterial spores were characterized for potential attributes (colonization, immunostimulation, and antimicrobial activity) that could account for their claimed probiotic properties. Three B. cereus strains were shown to persist in the mouse gastrointestinal tract for up to 18 days postadministration, demonstrating that these organisms have some ability to colonize. Spores of one B. cereus strain were extremely sensitive to simulated gastric conditions and simulated intestinal fluids. Spores of all strains were immunogenic when they were given orally to mice, but the B. pumilus strain was found to generate particularly high anti-spore immunoglobulin G titers. Spores of B. pumilus and of a laboratory strain of B. subtilis were found to induce the proinflammatory cytokine interleukin-6 in a cultured macrophage cell line, and in vivo, spores of B. pumilus and B. subtilis induced the proinflammatory cytokine tumor necrosis factor alpha and the Th1 cytokine gamma interferon. The B. pumilus strain and one B. cereus strain (B. cereus var. vietnami) were found to produce a bacteriocin-like activity against other Bacillus species. The results that provided evidence of colonization, immunostimulation, and antimicrobial activity support the hypothesis that the organisms have a potential probiotic effect. However, the three B. cereus strains were also found to produce the Hbl and Nhe enterotoxins, which makes them unsafe for human use.  相似文献   

4.
The transfer of plasmids by mating from four Bacillus thuringiensis subspecies to Bacillus anthracis and Bacillus cereus recipients was monitored by selecting transcipients which acquired plasmid pBC16 (Tcr). Transcipients also inherited a specific large plasmid from each B. thuringiensis donor at a high frequency along with a random array of smaller plasmids. The large plasmids (ca. 50 to 120 megadaltons), pXO13, pXO14, pXO15, and pXO16, originating from B. thuringiensis subsp. morrisoni, B. thuringiensis subsp. toumanoffi, B. thuringiensis subsp. alesti, and B. thuringiensis subsp. israelensis, respectively, were demonstrated to be responsible for plasmid mobilization. Transcipients containing any of the above plasmids had donor capability, while B. thuringiensis strains cured of each of them were not fertile, indicating that the plasmids confer conjugation functions. Confirmation that pXO13, pXO14, and pXO16 were self-transmissible was obtained by the isolation of fertile B. anthracis and B. cereus transcipients that contained only pBC16 and one of these plasmids. pXO14 was efficient in mobilizing the toxin and capsule plasmids, pXO1 and pXO2, respectively, from B. anthracis transcipients to plasmid-cured B. anthracis or B. cereus recipients. DNA-DNA hybridization experiments suggested that DNA homology exists among pXO13, pXO14, and the B. thuringiensis subsp. thuringiensis conjugative plasmids pXO11 and pXO12. Matings performed between strains which each contained the same conjugative plasmid demonstrated reduced efficiency of pBC16 transfer. However, in many instances when donor and recipient strains contained different conjugative plasmids, the efficiency of pBC16 transfer appeared to be enhanced.  相似文献   

5.
Thirty-two strains of Bacillus spp. were examined in a multilocus enzyme study by agarose gel electrophoresis. The organisms were Bacillus thuringiensis (21 strains, B. cereus (8), including two of var. mycoides, and B. megaterium (3). Strains having similar enzyme variants were grouped into zymovars. A total of 10 of 11 enzyme loci studied were polymorphic and 27 zymovars were distinguished among the 32 strains. The results were subjected to numerical analysis, phenetic affinities and genetic distances between the strains were calculated. The numerical analysis was unable to differentiate between B. thuringiensis and B. cereus. Our results indicated that based on this multilocus enzyme study these zymovars should be considered as belonging to the same species. A mycoides variant of B. cereus was the most distinctive strain studied and clearly belonged to a separate species, B. mycoides. The technique also allowed for identification of contamination and mislabelling of strains.  相似文献   

6.
Thirty-two strains of Bacillus spp. were examined in a multilocus enzyme study by agarose gel electrophoresis. The organisms were Bacillus thuringiensis (21 strains), B. cereus (8), including two of var. mycoides , and B. megaterium (3). Strains having similar enzyme variants were grouped into zymovars. A total of 10 of 11 enzyme loci studied were polymorphic and 27 zymovars were distinguished among the 32 strains. The results were subjected to numerical analysis, phenetic affinities and genetic distances between the strains were calculated. The numerical analysis was unable to differentiate between B. thuringiensis and B. cereus . Our results indicated that based on this multilocus enzyme study these zymovars should be considered as belonging to the same species. A mycoides variant of B. cereus was the most distinctive strain studied and clearly belonged to a separate species, B. mycoides. The technique also allowed for identification of contamination and mislabelling of strains.  相似文献   

7.
An improved broth medium was developed for high growth yields of Bacillus subtilis var. niger NCIB 8649, Bacillus cereus NCIB 9373, and Bacillus stearothermophilus NCIB 8919 and ATCC 7953. Sporulation was abundant (1.1 times 10-8 B. subtilis var. niger and 9.2 times 10-7 B. cereus per ml) at an initial pH of 7.0. Sporulation of both strains of B. stearothermophilus took place (1.9 times 10-7 and 2.4 times 10-7/ml, respectively) in this medium when initial pH values of 7.7 to 8.7 were used.  相似文献   

8.
Bacillus thuringiensis spacer regions between the 16S and 23S rRNAs were amplified with conserved primers, designated 19-mer and 23-mer primers. A spacer region of 144 bp was determined for all of 6 B. thuringiensis strains, 7 B. thuringiensis subspecies, and 11 B. thuringiensis field isolates, as well as for the closely related species Bacillus cereus and Bacillus anthracis. Computer analysis and alignment of nucleotide sequences identified three mutations and one deletion in the intergenic spacer region (ISR) of B. thuringiensis subsp. kurstaki HD-1 when compared with ISR sequences from other subspecies. The same differences were identified between the ISR of B. thuringiensis strains and the ISR of B. cereus and B. anthracis. These minor differences do not seem to be sufficient to allow the design of a species-specific oligonucleotide probe.  相似文献   

9.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

10.
11.
The toxicity of Bacillus thuringiensis subsp. israelensis to dipteran larvae (mosquitoes and black flies) depends on the presence of the pBtoxis plasmid. In this paper, two antibiotic resistance tagged pBtoxis were transferred by conjugation to other Bacillus cereus group strains. Among 15 potential recipients, only a lepidopteran active B. thuringiensis subspecies kurstaki and a B. cereus strain received the plasmid pBtoxis with a low transfer rate of about 10(-8) transconjugants/recipient. The resulting B. thuringiensis subspecies kurstaki transconjugant was active to both lepidopteran and dipteran targets and the B. cereus transconjugant was active against dipteran insects. Phase contrast microscopy showed that the B. cereus transconjugants could produce only round crystalline inclusion bodies while B. thuringiensis subspecies kurstaki transconjugant could produce both round and bipyramidal crystals during sporulation. SDS-PAGE revealed that all the major mosquitocidal proteins from pBtoxis could express in the two transconjugants, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa and Cyt1Aa. However, none of the experiment showed any indications of mobilising abilities of pBtoxis. The limited number of strains, which could receive and maintain pBtoxis using a conjugational helper plasmid, indicates a very narrow host range of the B. thuringiensis subsp. israelensis pBtoxis plasmid.  相似文献   

12.
The occurrence, structure, and glycosylation of lipoteichoic acids were studied in 15 Bacillus strains, including Bacillus cereus (4 strains), Bacillus subtilis (5 strains), Bacillus licheniformis (1 strain), Bacillus polymyxa (2 strains), and Bacillus circulans (3 strains). Whereas in the cells of B. polymyxa and B. circulans neither lipoteichoic acid nor related amphipathic polymer could be detected, the cells of other Bacillus strains were shown to contain lipoteichoic acids built up of poly(glycerol phosphate) backbone chains and hydrophobic anchors [gentiobiosyl(beta 1----1/3)diacylglycerol or monoacylglycerol]. The lipoteichoic acid chains of the B. licheniformis strain and three of the B. subtilis strains had N-acetylglucosamine side branches, but those of the B. cereus strains and the remaining two B. subtilis strains did not. The membranes of the B. licheniformis strain and the first three B. subtilis strains exhibited enzyme activities for the synthesis of beta-N-acetylglucosamine-P-polyprenol and for the transfer of N-acetylglucosamine from this glycolipid to endogenous acceptors presumed to be lipoteichoic acid precursors. In contrast, the membranes of the other strains lacked both or either of these two enzyme activities. The correlation between the occurrence of N-acetylglucosamine-linked lipoteichoic acids and the distribution of these enzymes is consistent with the previously proposed function of beta-N-acetylglucosamine-P-polyprenol as a glycosyl donor in the introduction of alpha-N-acetylglucosamine branches to lipoteichoic acid backbone chains.  相似文献   

13.
Bacillus anthracis , Bacillus cereus and Bacillus thuringiensis have been described as members of the Bacillus cereus group but are, in fact, one species. B. anthracis is a mammal pathogen, B. thuringiensis an entomopathogen and B. cereus a ubiquitous soil bacterium and an occasional human pathogen. In two clinical isolates of B. cereus , in some B. thuringiensis strains and in B. anthracis , an S-layer has been described. We investigated how the S-layer is distributed in B. cereus , and whether phylogeny or ecology could explain its presence on the surface of some but not all strains. We first developed a simple biochemical assay to test for the presence of the S-layer. We then used the assay with 51 strains of known genetic relationship: 26 genetically diverse B. cereus and 25 non- B. anthracis of the B. anthracis cluster. When present, the genetic organization of the S-layer locus was analysed further. It was identical in B. cereus and B. anthracis . Nineteen strains harboured an S-layer, 16 of which belonged to the B. anthracis cluster. All 19 were B. cereus clinical isolates or B. thuringiensis , except for one soil and one dairy strain. These findings suggest a common phylogenetic origin for the S-layer at the surface of B. cereus strains and, presumably, ecological pressure on its maintenance.  相似文献   

14.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

15.
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

16.
Transfer of chromosomal genes and plasmids in Bacillus thuringiensis   总被引:1,自引:0,他引:1  
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

17.
The plasmid pHT73 containing cry1Ac and tagged with an erythromycin resistance gene was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to several Bacillus cereus group strains by conjugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and phase contrast microscopy showed that the transconjugants containing plasmid pHT73 could express Cry1Ac toxin and produce bipyramidal crystalline inclusion bodies during sporulation. The study demonstrated that pHT73 could be transferred to B. thuringiensis subsp. kurstaki, several B. cereus strains and Bacillus mycoides. Under non-selective conditions, the stability of the pHT73 plasmid in the transconjugants was found to be 58.2-100% after 100 generations and 4-96% after 200 generations. The variations are mainly caused by the choice of receptor strain.  相似文献   

18.
AIM: The study seeks to shed light on the aminopolyol, broad-spectrum antibiotic zwittermicin A gene cluster of Bacillus thuringiensis subsp. kurstaki HD1 and to identify any new uncharacterized genes with an eventual goal to establish a better understanding of the resistance gene cluster. METHODS AND RESULTS: We screened 51 serovars of B. thuringiensis by PCR and identified 12 zmaR-positive strains. The zmaR-positive B. thuringiensis subsp. kurstaki HD1 strain displayed inhibition zones against indicator fungal strain Phytophthora meadii and bacterial strain Erwinia herbicola as well as against Rhizopus sp., Xanthomonas campestris and B. thuringiensis subsp. finitimus. The zmaR gene cluster of strain HD1 was partially cloned using a lambda library and was extensively characterized based on the information available from a study performed on a similar group of genes in Bacillus cereus. CONCLUSIONS: Three of the five genes in the zwittermicin gene cluster, including the zmaR gene, had counterparts in B. cereus, and the other two were new members of the B. thuringiensis zmaR gene cluster. SIGNIFICANCE AND IMPACT OF THE STUDY: The two new genes were extensively analysed and the data is presented. Understanding antifungal activity of B. thuringiensis may help us to design suitable Cry toxin delivery agents with antifungal activity as well as enhanced insecticidal activity.  相似文献   

19.
Certain properties of 22 Bacillus cereus strains isolated from different foods and food poisoning episodes were investigated in order to evaluate possible différences between strains isolated from diarrhoeal and vomiting type food poisoning outbreaks. None of the strains isolated from vomiting type episodes produced acid from salicin and mannose, whereas 80 and 40 % of the strains from diarrhoeal type outbreaks were positive, respectively. No association between the antibiotic sensitivity pattern or the fatty acid composition and the source of a strain could be found, although some strains differed from the general pattern of B. cereus in some instances. No significant differences in the production of the skin factor between strains isolated from the two types of outbreaks were found either. The findings of this study support the observation that the food environment itself essentially affects the enterotoxin formation of B. cereus.  相似文献   

20.
本研究以124株我国广西巴马百岁以上长寿老人源乳酸菌菌株为试材,采用双层琼脂平板扩散法筛选产细菌素的优良菌株。在排除有机酸、H2O2等的干扰后,菌株B02、B03、B04、B07、B11、B25、B24和B78的发酵上清液对受试的大肠埃希菌、金黄色葡萄球菌等5株指示菌都表现出很强的抑制作用;进一步硫酸铵沉淀、透析及浓缩处理后,其抑菌活性显著增强,同时蛋白酶敏感性试验显示其具有蛋白质性质,这些结果共同确定其为乳酸菌细菌素。最后,通过16S rRNA序列分析鉴定后确定B02为副干酪乳杆菌;B03为植物乳杆菌;B04为动物双歧杆菌;B07为干酪乳杆菌;B11为德氏乳杆菌保加利亚亚种;B24为鼠李糖乳杆菌;B25为粪肠球菌;B78为植物乳杆菌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号