共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphoenolpyruvate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus 总被引:2,自引:0,他引:2
下载免费PDF全文

Phosphoenolpyruvate synthetase (PpsA) was purified from the hyperthermophilic archaeon Pyrococcus furiosus. This enzyme catalyzes the conversion of pyruvate and ATP to phosphoenolpyruvate (PEP), AMP, and phosphate and is thought to function in gluconeogenesis. PpsA has a subunit molecular mass of 92 kDa and contains one calcium and one phosphorus atom per subunit. The active form has a molecular mass of 690 ± 20 kDa and is assumed to be octomeric, while approximately 30% of the protein is purified as a large (~1.6 MDa) complex that is not active. The apparent Km values and catalytic efficiencies for the substrates pyruvate and ATP (at 80°C, pH 8.4) were 0.11 mM and 1.43 × 104 mM−1 · s−1 and 0.39 mM and 3.40 × 103 mM−1 · s−1, respectively. Maximal activity was measured at pH 9.0 (at 80°C) and at 90°C (at pH 8.4). The enzyme also catalyzed the reverse reaction, but the catalytic efficiency with PEP was very low [kcat/Km = 32 (mM · s)−1]. In contrast to several other nucleotide-dependent enzymes from P. furiosus, PpsA has an absolute specificity for ATP as the phosphate-donating substrate. This is the first PpsA from a nonmethanogenic archaeon to be biochemically characterized. Its kinetic properties are consistent with a role in gluconeogenesis, although its relatively high cellular concentration (~5% of the cytoplasmic protein) suggests an additional function possibly related to energy spilling. It is not known whether interconversion between the smaller, active and larger, inactive forms of the enzyme has any functional role. 相似文献
2.
Overexpression and characterization of a prolyl endopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. 总被引:1,自引:0,他引:1
下载免费PDF全文

V J Harwood J D Denson K A Robinson-Bidle H J Schreier 《Journal of bacteriology》1997,179(11):3613-3618
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown. 相似文献
3.
Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus 总被引:29,自引:0,他引:29
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase. 相似文献
4.
Deng L Starostina NG Liu ZJ Rose JP Terns RM Terns MP Wang BC 《Biochemical and biophysical research communications》2004,315(3):726-732
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation. 相似文献
5.
Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus
下载免费PDF全文

Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism. 相似文献
6.
Arndt JW Hao B Ramakrishnan V Cheng T Chan SI Chan MK 《Structure (London, England : 1993)》2002,10(2):215-224
The structure of Pyrococcus furiosus carboxypeptidase (PfuCP) has been determined to 2.2 A resolution using multiwavelength anomalous diffraction (MAD) methods. PfuCP represents the first structure of the new M32 family of carboxypeptidases. The overall structure is comprised of a homodimer. Each subunit is mostly helical with its most pronounced feature being a deep substrate binding groove. The active site lies at the bottom of this groove and contains an HEXXH motif that coordinates the metal ion required for catalysis. Surprisingly, the structure is similar to the recently reported rat neurolysin. Comparison of these structures as well as sequence analyses with other homologous proteins reveal several conserved residues. The roles for these conserved residues in the catalytic mechanism are inferred based on modeling and their location. 相似文献
7.
Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. 总被引:1,自引:0,他引:1
J van der Oost W G Voorhorst S W Kengen A C Geerling V Wittenhorst Y Gueguen W M de Vos 《European journal of biochemistry》2001,268(10):3062-3068
The gene encoding a short-chain alcohol dehydrogenase, AdhA, has been identified in the hyperthermophilic archaeon Pyrococcus furiosus, as part of an operon that encodes two glycosyl hydrolases, the beta-glucosidase CelB and the endoglucanase LamA. The adhA gene was functionally expressed in Escherichia coli, and AdhA was subsequently purified to homogeneity. The quaternary structure of AdhA is a dimer of identical 26-kDa subunits. AdhA is an NADPH-dependent oxidoreductase that converts alcohols to the corresponding aldehydes/ketones and vice versa, with a rather broad substrate specificity. Maximal specific activities were observed with 2-pentanol (46 U x mg(-1)) and pyruvaldehyde (32 U x mg(-1)) in the oxidative and reductive reaction, respectively. AdhA has an optimal activity at 90 degrees C, at which temperature it has a half life of 22.5 h. The expression of the adhA gene in P. furiosus was demonstrated by activity measurements and immunoblot analysis of cell extracts. A role of this novel type of archaeal alcohol dehydrogenase in carbohydrate fermentation is discussed. 相似文献
8.
Characterization of an aminoacylase from the hyperthermophilic archaeon Pyrococcus furiosus.
下载免费PDF全文

Aminoacylase was identified in cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by its ability to hydrolyze N-acetyl-L-methionine and was purified by multistep chromatography. The enzyme is a homotetramer (42.06 kDa per subunit) and, as purified, contains 1.0 +/- 0.48 g-atoms of zinc per subunit. Treatment of the purified enzyme with EDTA resulted in complete loss of activity. This was restored to 86% of the original value (200 U/mg) by treatment with ZnCl(2) (and to 74% by the addition of CoCl(2)). After reconstitution with ZnCl(2), the enzyme contained 2.85 +/- 0.48 g-atoms of zinc per subunit. Aminoacylase showed broad substrate specificity and hydrolyzed nonpolar N-acylated L amino acids (Met, Ala, Val, and Leu), as well as N-formyl-L-methionine. The high K(m) values for these compounds indicate that the enzyme plays a role in the metabolism of protein growth substrates rather than in the degradation of cellular proteins. Maximal aminoacylase activity with N-acetyl-L-methionine as the substrate occurred at pH 6.5 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified aminoacylase was used to identify, in the P. furiosus genome database, a gene that encodes 383 amino acids. The gene was cloned and expressed in Escherichia coli by using two approaches. One involved the T7 lac promoter system, in which the recombinant protein was expressed as inclusion bodies. The second approach used the Trx fusion system, and this produced soluble but inactive recombinant protein. Renaturation and reconstitution experiments with Zn(2+) ions failed to produce catalytically active protein. A survey of databases showed that, in general, organisms that contain a homolog of the P. furiosus aminoacylase (> or = 50% sequence identity) utilize peptide growth substrates, whereas those that do not contain the enzyme are not known to be proteolytic, suggesting a role for the enzyme in primary catabolism. 相似文献
9.
Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction
下载免费PDF全文

The fermentative hyperthermophile Pyrococcus furiosus contains an NADPH-utilizing, heterotetrameric (alphabetagammadelta), cytoplasmic hydrogenase (hydrogenase I) that catalyzes both H(2) production and the reduction of elemental sulfur to H(2)S. Herein is described the purification of a second enzyme of this type, hydrogenase II, from the same organism. Hydrogenase II has an M(r) of 320,000 +/- 20,000 and contains four different subunits with M(r)s of 52,000 (alpha), 39,000 (beta), 30,000 (gamma), and 24,000 (delta). The heterotetramer contained Ni (0.9 +/- 0.1 atom/mol), Fe (21 +/- 1.6 atoms/mol), and flavin adenine dinucleotide (FAD) (0.83 +/- 0.1 mol/mol). NADPH and NADH were equally efficient as electron donors for H(2) production with K(m) values near 70 microM and k(cat)/K(m) values near 350 min(-1) mM(-1). In contrast to hydrogenase I, hydrogenase II catalyzed the H(2)-dependent reduction of NAD (K(m), 128 microM; k(cat)/K(m), 770 min(-1) mM(-1)). Ferredoxin from P. furiosus was not an efficient electron carrier for either enzyme. Both H(2) and NADPH served as electron donors for the reduction of elemental sulfur (S(0)) and polysulfide by hydrogenase I and hydrogenase II, and both enzymes preferentially reduce polysulfide to sulfide rather than protons to H(2) using NADPH as the electron donor. At least two [4Fe-4S] and one [2Fe-2S] cluster were detected in hydrogenase II by electron paramagnetic resonance spectroscopy, but amino acid sequence analyses indicated a total of five [4Fe-4S] clusters (two in the beta subunit and three in the delta subunit) and one [2Fe-2S] cluster (in the gamma subunit), as well as two putative nucleotide-binding sites in the gamma subunit which are thought to bind FAD and NAD(P)(H). The amino acid sequences of the four subunits of hydrogenase II showed between 55 and 63% similarity to those of hydrogenase I. The two enzymes are present in the cytoplasm at approximately the same concentration. Hydrogenase II may become physiologically relevant at low S(0) concentrations since it has a higher affinity than hydrogenase I for both S(0) and polysulfide. 相似文献
10.
J E Tuininga C H Verhees J van der Oost S W Kengen A J Stams W M de Vos 《The Journal of biological chemistry》1999,274(30):21023-21028
Pyrococcus furiosus uses a modified Embden-Meyerhof pathway involving two ADP-dependent kinases. Using the N-terminal amino acid sequence of the previously purified ADP-dependent glucokinase, the corresponding gene as well as a related open reading frame were detected in the genome of P. furiosus. Both genes were successfully cloned and expressed in Escherichia coli, yielding highly thermoactive ADP-dependent glucokinase and phosphofructokinase. The deduced amino acid sequences of both kinases were 21.1% identical but did not reveal significant homology with those of other known sugar kinases. The ADP-dependent phosphofructokinase was purified and characterized. The oxygen-stable protein had a native molecular mass of approximately 180 kDa and was composed of four identical 52-kDa subunits. It had a specific activity of 88 units/mg at 50 degrees C and a pH optimum of 6.5. As phosphoryl group donor, ADP could be replaced by GDP, ATP, and GTP to a limited extent. The K(m) values for fructose 6-phosphate and ADP were 2.3 and 0.11 mM, respectively. The phosphofructokinase did not catalyze the reverse reaction, nor was it regulated by any of the known allosteric modulators of ATP-dependent phosphofructokinases. ATP and AMP were identified as competitive inhibitors of the phosphofructokinase, raising the K(m) for ADP to 0.34 and 0.41 mM, respectively. 相似文献
11.
Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. 总被引:2,自引:1,他引:2
下载免费PDF全文

Pyrococcus furiosus is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 105 degrees C by fermenting carbohydrates and peptides. Cell extracts have been previously shown to contain an unusual acetyl coenzyme A (acetyl-CoA) synthetase (ACS) which catalyzes the formation of acetate and ATP from acetyl-CoA by using ADP and phosphate rather than AMP and PPi. We show here that P. furiosus contains two distinct isoenzymes of ACS, and both have been purified. One, termed ACS I, uses acetyl-CoA and isobutyryl-CoA but not indoleacetyl-CoA or phenylacetyl-CoA as substrates, while the other, ACS II, utilizes all four CoA derivatives. Succinyl-CoA did not serve as a substrate for either enzyme. ACS I and ACS II have similar molecular masses (approximately 140 kDa), and both appear to be heterotetramers (alpha2beta2) of two different subunits of 45 (alpha) and 23 (beta) kDa. They lack metal ions such as Fe2+, Cu2+, Zn2+, and Mg2+ and are stable to oxygen. At 25 degrees C, both enzymes were virtually inactive and exhibited optimal activities above 90 degrees C (at pH 8.0) and at pH 9.0 (at 80 degrees C). The times required to lose 50% of their activity at 80 degrees C were about 18 h for ACS I and 8 h for ACS II. With both enzymes in the acid formation reactions, ADP and phosphate could be replaced by GDP and phosphate but not by CDP and phosphate or by AMP and PPi. The apparent Km values for ADP, GDP, and phosphate were approximately 150, 132, and 396 microM, respectively, for ACS I (using acetyl-CoA) and 61, 236, and 580 microM, respectively, for ACS II (using indoleacetyl-CoA). With ADP and phosphate as substrates, the apparent Km values for acetyl-CoA and isobutyryl-CoA were 25 and 29 microM, respectively, for ACS I and 26 and 12 microM, respectively, for ACS II. With ACS II, the apparent Km value for phenylacetyl-CoA was 4 microM. Both enzymes also catalyzed the reverse reaction, the ATP-dependent formation of the CoA derivatives of acetate (I and II), isobutyrate (I and II), phenylacetate (II only), and indoleacetate (II only). The N-terminal amino acid sequences of the two subunits of ACS I were similar to those of ACS II and to that of a hypothetical 67-kDa protein from Escherichia coli but showed no similarity to mesophilic ACS-type enzymes. To our knowledge, ACS I and II are the first ATP-utilizing enzymes to be purified from a hyperthermophile, and ACS II is the first enzyme of the ACS type to utilize aromatic CoA derivatives. 相似文献
12.
13.
Nishihara M Nagahama S Ohga M Koga Y 《Extremophiles : life under extreme conditions》2000,4(5):275-277
Two straight-chain fatty alcohols (n-hexadecanol and n-octadecanol) were found in the neutral lipid fraction extracted from Pyrococcus furiosus cells. They were identified by thin-layer and gas-liquid chromatography, mass and infrared spectra, and chemical modification.
The fatty alcohols accounted for 54% of the neutral lipid of the cell.
Received: March 8, 2000 / Accepted: May 8, 2000 相似文献
14.
15.
Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase
下载免费PDF全文

Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 +/- 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85 degrees C using hydrogen peroxide with reduced P. furiosus rubredoxin as the electron donor. The specific activity was 36 micromol of rubredoxin oxidized/min/mg with apparent K(m) values of 35 and 70 microM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and P. furiosus NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 micromol of H(2)O(2) reduced/min/mg of rubrerythrin at 85 degrees C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in Escherichia coli grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the E. coli growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content. P. furiosus rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species. 相似文献
16.
Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus
下载免费PDF全文

Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya. 相似文献
17.
Arif Muhammad Rashid Naeem Perveen Sumera Bashir Qamar Akhtar Muhammad 《Extremophiles : life under extreme conditions》2019,23(1):69-77
Extremophiles - The gene-encoding Indole-3-glycerol phosphate synthase, a key enzyme involved in the cyclization of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate, from Pyrococcus furiosus... 相似文献
18.
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction. 相似文献
19.
A beta-glycosidase gene homolog of Pyrococcus horikoshii (BGPh) was successfully expressed in Escherichia coli. The enzyme was localized in a membrane fraction and solubilized with 2.5% Triton X-100 at 85 degrees C for 15 min. The optimum pH was 6.0 and the optimum temperature was over 100 degrees C, respectively. BGPh stability was dependent on the presence of Triton X-100, the enzyme's half-life at 90 degrees C (pH 6.0) was 15 h. BGPh has a novel substrate specificity with k(cat)/K(m) values high enough for hydrolysis of beta-D-Glcp derivatives with long alkyl chain at the reducing end and low enough for the hydrolysis of beta-linked glucose dimer more hydrophilic than aryl- or alkyl-beta-D-Glcp. 相似文献
20.
Characterization of a novel zinc-containing, lysine-specific aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus
下载免费PDF全文

Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon. 相似文献