首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein A-I (apoA-I) induces the translocation of newly synthesized cholesterol as well as caveolin-1 to the cytosolic lipid-protein particle (CLPP) fraction in astrocytes before its appearance in high density lipoprotein generated in the medium (Ito, J., Y. Nagayasu, K. Kato, R. Sato, and S. Yokoyama. 2002. Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem. 277: 7929-7935). We here report the association of signal-related molecules with CLPP. ApoA-I induces rapid translocation of protein kinase Calpha to the CLPP fraction and its phosphorylation in astrocytes. ApoA-I also induces the translocation of phospholipase Cgamma to CLPP. Diacylglyceride (DG) production is increased by apoA-I in the cells, with a maximum at 5 min after the stimulation, and the increase takes place also in the CLPP fraction. An inhibitor of receptor-coupled phospholipase C, U73122, inhibited all the apoA-I-induced events, such as DG production, cholesterol translocation to the cytosol, release of cholesterol, and translocation of protein kinase Calpha into the CLPP fraction. CLPP may thus be involved in the apoA-I-initiated signal transduction in astrocytes that is related to intracellular cholesterol trafficking for the generation of high density lipoprotein in the brain.  相似文献   

2.
We previously identified cytosolic lipid–protein particles (CLPP) having size and density of HDL in rat astrocytes, to which apoA-I induces translocation of cholesterol, caveolin-1 and protein kinase Cα (PKCα) following its association with microtubules prior to cholesterol release/biogenesis of HDL (JBC 277: 7929, 2002; JLR 45: 2269, 2004). To further understand the physiological relevance of these findings, we investigated the CLPP/microtubule association and its role in intracellular cholesterol trafficking by using a technique of reconstituted microtubule-like filaments (rMT) in rat astrocyte cytosol. When the cells were pretreated with apoA-I, α-tubulin as a 52-kDa protein in rMT was found phosphorylated while α-tubulin in a soluble monomeric form was little phosphorylated. The phosphorylation took place coincidentally to apoA-I-induced association with rMT of CLPP, a complex containing PKCα, and was suppressed by a PKC inhibitor, Bis indolylmaleimide 1 (BIM). α-Tubulin dissociated from CLPP when phosphorylated, and it poorly bound to CLPP once dissociated. BIM did not influence association of PKCα with rMT but suppressed apoA-I-induced cholesterol translocation to the cytosol from the ER/Golgi apparatus and apoA-I-mediated cholesterol release. We thereby concluded that α-tubulin phosphorylation by PKCα on CLPP is involved in reversible CLPP association with the microtubules and intracellular cholesterol trafficking for apoA-I-dependent HDL biogenesis/cholesterol release in rat astrocytes.  相似文献   

3.
Intercellular cholesterol transport in the brain is carried by high density lipoprotein (HDL) generated in situ by cellular interaction with the apolipoprotein apoE, which is mainly synthesized by astrocytes, and with apoA-I secreted by cells such as endothelial cells. Rat astrocytes in fact generate HDL with extracellular apoA-I in addition to releasing HDL with endogenously synthesized apoE, seemingly by the same mechanism as the HDL assembly for systemic circulation. Relating to this reaction, apoA-I induced translocation of newly synthesized cholesterol and phospholipid to the cytosol prior to extracellular assembly of HDL, accompanied by an increase of caveolin-1 in the cytosol, activation of sterol regulatory element-binding protein, and enhancement of cholesterol synthesis. The lipid translocated into the cytosol was recovered in the fraction with a density of 1.09-1.16 g/ml as well as caveolin-1 and cyclophilin A. Cyclosporin A inhibited these apoA-I-mediated reactions and suppressed apoA-I-mediated cholesterol release. The findings suggest that such translocation of cholesterol and phospholipid into the cytosol is related to the apo A-I-mediated HDL assembly in astrocytes through functional association with caveolin-1 and a cyclosporin A-sensitive cyclophilin protein(s).  相似文献   

4.
In the previous paper, we reported that apolipoprotein (apo) A-I enhances generation of HDL-like lipoproteins in rat astrocytes to be accompanied with both increase in tyrosine phosphorylation of phospholipase Cγ (PL-Cγ) and PL-Cγ translocation to cytosolic lipid-protein particles (CLPP) fraction. In this paper, we studied the interaction between apoA-I and ATP-binding cassette transporter A1 (ABCA1) to relate with PL-Cγ function for generation of HDL-like lipoproteins in the apoA-I-stimulated astrocytes. ABCA1 co-migrated with exogenous apoA-I with apparent molecular weight over 260kDa on SDS-PAGE when rat astrocytes were treated with apoA-I and then with a cross-linker, BS3. The solubilized ABCA1 of rat astrocytes was associated with the apoA-I-immobilized Affi-Gel 15. An LXR agonist, To901317, increased the cellular level of ABCA1, association of apoA-I with ABCA1 and apoA-I-mediated lipid release in rat astrocytoma GA-1/Mock cells where ABCA1 expression at baseline is very low. PL-Cγ was co-isolated by apoA-I-immobilized Affi-Gel 15 and co-immunoprecipitated by anti-ABCA1 antibody along with ABCA1 from the solubilized membrane fraction of rat astrocytes. The SiRNA of ABCA1 suppressed not only the PL-Cγ binding to ABCA1 but also the tyrosine phosphorylation of PL-Cγ. A PL-C inhibitor, U73122, prevented generation of apoA-I-mediated HDL-like lipoproteins in rat astrocytes. To901317 increased the association of PL-Cγ with ABCA1 in GA-1/Mock cells dependently on the increase of cellular level of ABCA1 without changing that of PL-Cγ. These findings suggest that the exogenous apoA-I augments the interaction between PL-Cγ and ABCA1 to stimulate tyrosine phosphorylation and activation of PL-Cγ for generation of HDL-like lipoproteins in astrocytes.  相似文献   

5.
Kim JH  Han JM  Lee S  Kim Y  Lee TG  Park JB  Lee SD  Suh PG  Ryu SH 《Biochemistry》1999,38(12):3763-3769
Caveolae are small plasma membrane invaginations that have been implicated in cell signaling, and caveolin is a principal structural component of the caveolar membrane. Previously we have demonstrated that protein kinase Calpha (PKCalpha) directly interacts with phospholipase D1 (PLD1), activating the enzymatic activity of PLD1 in the presence of phorbol 12-myristate 13-acetate (PMA) [Lee, T. G., et al. (1997) Biochim. Biophys. Acta 1347, 199-204]. In this study, using a detergent-free procedure for the purification of a caveolin-enriched membrane fraction (CEM) and immunoblot analysis, we show that PLD1 is enriched in the CEMs of 3Y1 rat fibroblasts. Purified PLD1 directly bound to a glutathione S-transferase-caveolin-1 fusion protein in in vitro binding assays. The association of PLD1 with caveolin-1 could be completely eliminated by preincubation of PLD1 with an oligopeptide corresponding to the scaffolding domain (amino acids 82-101) of caveolin-1, indicating that caveolin-1 interacts with PLD1 through the scaffolding domain. The peptide also inhibited PKCalpha-stimulated PLD1 activity and the interaction between PLD1 and PKCalpha with an IC50 of 0.5 microM. PMA elicits translocation of PKCalpha to the CEMs, inducing PLD activation through the interaction of PKCalpha with PLD1 in the CEMs. Caveolin-1 also coimmunoprecipitated with PLD1 in the absence of PMA, and the amounts of coimmunoprecipitated caveolin-1 decreased in response to treatment with PMA. Taken together, our results suggest a new mechanism for the regulation of the PKCalpha-dependent PLD activity through the molecular interaction between PLD1, PKCalpha, and caveolin-1 in caveolae.  相似文献   

6.
7.
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathic alpha helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathic alpha-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 alpha helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.  相似文献   

8.
Here, we have created a series of caveolin-1 (Cav-1) deletion mutants to examine whether the membrane spanning segment is required for membrane attachment of caveolin-1 in vivo. One mutant, Cav-1-(1-101), contains only the cytoplasmic N-terminal domain and lacks the membrane spanning domain and the C-terminal domain. Interestingly, Cav-1-(1-101) still behaves as an integral membrane protein but lacks any known signals for lipid modification. In striking contrast, another deletion mutant, Cav-1-(1-81), behaved as a soluble protein. These results implicate caveolin-1 residues 82-101 (also known as the caveolin scaffolding domain) in membrane attachment. In accordance with the postulated role of the caveolin-1 scaffolding domain as an inhibitor of signal transduction, Cav-1-(1-101) retained the ability to functionally inhibit signaling along the p42/44 mitogen-activated protein kinase cascade, whereas Cav-1-(1-81) was completely ineffective. To rule out the possibility that membrane attachment mediated by the caveolin scaffolding domain was indirect, we reconstituted the membrane binding of caveolin-1 in vitro. By using purified glutathione S-transferase-caveolin-1 fusion proteins and reconstituted lipid vesicles, we show that the caveolin-1 scaffolding domain and the C-terminal domain (residues 135-178) are both sufficient for membrane attachment in vitro. However, the putative membrane spanning domain (residues 102-134) did not show any physical association with membranes in this in vitro system. Taken together, our results provide strong evidence that the caveolin scaffolding domain contributes to the membrane attachment of caveolin-1.  相似文献   

9.
When sphingomyelin is digested by sphingomyelinase in the plasma membrane of rat astrocytes, productions of sphingomyelin, diacylglycerol, and phosphatidylcholine are stimulated. D609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed these effects. Similarly, when apolipoprotein A-I removed cellular cholesterol, phosphatidylcholine, and sphingomyelin to generate high density lipoprotein, cholesterol synthesis from acetate subsequently increased, and sphingomyelin synthesis from acetate and serine also increased. D609 inhibited these effects again. D609 also inhibited the cholesterol removal by apoA-I not only from the astrocytes but also from BALB/3T3 and RAW264 cells. D609 decreased cholesterol synthesis, although D609 did not directly inhibit hydroxymethylglutaryl-CoA reductase. ApoA-I-stimulated translocation of newly synthesized cholesterol to cytosol was also decreased by D609. A diacylglycerol analog increased the apoA-I-mediated cholesterol release, whereas ceramide did not influence it. We concluded that removal of cellular sphingomyelin by apolipoproteins is replenished by transfer of phosphorylcholine from phosphatidylcholine to ceramide, and this reaction may limit the removal of cholesterol by apoA-I. This reaction also produces diacylglycerol that potentially triggers subsequent cellular signal cascades and regulates intracellular cholesterol trafficking.  相似文献   

10.
Integrin linked kinase 1 (ILK1), a member of the serine/threonine kinases, has been shown to be crucial for the cell survival, differentiation, and Wnt signaling. Firstly, by using a confocal microscopy and a transfection approach, we obtained the evidence that ILK1 interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. By ILK1 deletion mutant analysis, we characterized the caveolin-1-binding domain in the kinase domain of ILK1. In addition, we found that native ILK1 is associated with endogenous caveolin-1 in COS-1 cells. Secondly, transient transfection assays showed that a reduction in caveolin-1 binding leads to a substantial increase in the serine/threonine phosphorylation of ILK1. Thirdly, caveolin-1 and its scaffolding peptide (amino acids 82-101) functionally suppressed the auto-kinase activity of purified recombinant ILK1 protein. Fourthly, the association of ILK1 with caveolin-1 regulated its cytoplasmic retention; if it was not associated with caveolin-1, it was transported to the nucleus. Fifthly, we also noticed the putative nuclear localization sequences (nls) in ILK1 near the caveolin-1-binding domain. Thus, our data indicate that caveolin-1 regulates ILK1 auto-phosphorylation activity and its subcellular localization via a specific protein-protein interaction through blocking the exposure of its putative nls motif.  相似文献   

11.
Caveolin-1, the primary coat protein of caveolae, has been implicated as a regulator of signal transduction through binding of its "scaffolding domain" to key signaling molecules. However, the physiological importance of caveolin-1 in regulating signaling has been difficult to distinguish from its traditional functions in caveolae assembly, transcytosis, and cholesterol transport. To directly address the importance of the caveolin scaffolding domain in vivo, we generated a chimeric peptide with a cellular internalization sequence fused to the caveolin-1 scaffolding domain (amino acids 82-101). The chimeric peptide was efficiently taken up into blood vessels and endothelial cells, resulting in selective inhibition of acetylcholine (Ach)-induced vasodilation and nitric oxide (NO) production, respectively. More importantly, systemic administration of the peptide to mice suppressed acute inflammation and vascular leak to the same extent as a glucocorticoid or an endothelial nitric oxide synthase (eNOS) inhibitor. These data imply that the caveolin-1 scaffolding domain can selectively regulate signal transduction to eNOS in endothelial cells and that small-molecule mimicry of this domain may provide a new therapeutic approach.  相似文献   

12.
Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux   总被引:2,自引:0,他引:2  
Cholesterol efflux, an important mechanism by which high density lipoproteins (HDL) protect against atherosclerosis, is initiated by docking of apolipoprotein A-I (apoA-I), a major HDL protein, to specific binding sites followed by activation of ATP-binding cassette transporter A1 (ABCA1) and translocation of cholesterol from intracellular compartments to the exofacial monolayer of the plasma membrane where it is accessible to HDL. In this report, we investigated potential signal transduction pathways that may link apoA-I binding to cholesterol translocation to the plasma membrane and cholesterol efflux. By using pull-down assays we found that apoA-I substantially increased the amount of activated Cdc42, Rac1, and Rho in human fibroblasts. Moreover, apoA-I induced actin polymerization, which is known to be controlled by Rho family G proteins. Inhibition of Cdc42 and Rac1 with Clostridium difficile toxin B inhibited apoA-I-induced cholesterol efflux, whereas inhibition of Rho with Clostridium botulinum C3-exoenzyme exerted opposite effects. Adenoviral expression of a Cdc42(T17N) dominant negative mutant substantially reduced apoA-I-induced cholesterol efflux, whereas dominant negative Rac1(T17N) had no effect. We further found that two downstream effectors of Cdc42/Rac1 signaling, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated by apoA-I. Pharmacological inhibition of JNK but not p38 MAPK decreased apoA-I-induced cholesterol efflux, whereas anisomycin and hydrogen peroxide, two direct JNK activators, could partially substitute for apoA-I in its ability to induce cholesterol efflux. These results for the first time demonstrate activation of Rho family G proteins and stress kinases by apoA-I and implicate the involvement of Cdc42 and JNK in the apoA-I-induced cholesterol efflux.  相似文献   

13.
The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool.  相似文献   

14.
There is little information on the molecular events that control the subcellular distribution of protein kinase C during cardiac cell differentiation. We examined protein kinase C activity and the subcellular distribution of representatives of the "classical," "novel," and "atypical" protein kinase C's in P19 murine teratoma cells induced to undergo differentiation into cardiac myocytes by the addition of dimethylsulfoxide to the medium (Grepin et al., Development 124, 2387-2395, 1997). Differentiation was assessed by the presence of striated myosin, a morphological marker for cardiac cells. Addition of dimethyl sulfoxide to the medium resulted in the appearance of striated myosin by 10 days postincubation. Immunolocalization and Western blot studies revealed that a significant proportion of protein kinase Calpha, -epsilon, and -zeta were associated with the particulate fraction in P19 cells prior to differentiation. Differentiation into cardiac cells resulted in a translocation of protein kinase C activity from the particulate fraction to cytosol and localization of most of protein kinase Calpha, -epsilon, and -zeta to the cytoplasmic compartment. The total cellular protein kinase C activity was unaltered during differentiation. The translocation of protein kinase C activity during differentiation of P19 cells into cardiac myocytes was associated with a decrease in the levels of cellular 1, 2-diacyl-sn-glycerol. The cellular levels of phosphatidylserine and phosphatidylinositol did not change during differentiation. Addition of 1,2-dioctanoyl-sn-glycerol, a cell-permeant 1, 2-diacyl-sn-glycerol analog, reversed the differentiation-induced switch in the relative distribution of protein kinase C activity and dramatically increased the association of protein kinase Calpha with the particulate fraction. Addition of 1,2-dioctanoyl-sn-glycerol did not reverse the pattern of distribution for protein kinase Cepsilon or -zeta. The results indicate that protein kinase C activity and protein kinase Calpha, -epsilon and -zeta isoforms are redistributed from the particulate to the cytosolic fraction during differentiation of P19 cells into cardiomyocytes. The mechanism for the redistribution of protein kinase Calpha may be related to the reduction in the cellular 1,2-diacyl-sn-glycerol levels that accompany differentiation.  相似文献   

15.
NOSIP, a novel modulator of endothelial nitric oxide synthase activity.   总被引:10,自引:0,他引:10  
Production of nitric oxide (NO) in endothelial cells is regulated by direct interactions of endothelial nitric oxide synthase (eNOS) with effector proteins such as Ca2+-calmodulin, by posttranslational modifications such as phosphorylation via protein kinase B, and by translocation of the enzyme from the plasma membrane caveolae to intracellular compartments. Reversible acylation of eNOS is thought to contribute to the intracellular trafficking of the enzyme; however, protein factor(s) that govern the translocation of the enzyme are still unknown. Here we have used the yeast two-hybrid system and identified a novel 34 kDa protein, termed NOSIP (eNOS interacting protein), which avidly binds to the carboxyl-terminal region of the eNOS oxygenase domain. Coimmunoprecipitation studies demonstrated the specific interaction of eNOS and NOSIP in vitro and in vivo, and complex formation was inhibited by a synthetic peptide of the caveolin-1 scaffolding domain. NO production was significantly reduced in eNOS-expressing CHO cells (CHO-eNOS) that transiently overexpressed NOSIP. Stimulation with the calcium ionophore A23187 induced the reversible translocation of eNOS from the detergent-insoluble to the detergent-soluble fractions of CHO-eNOS, and this translocation was completely prevented by transient coexpression of NOSIP in CHO-eNOS. Immunofluorescence studies revealed a prominent plasma membrane staining for eNOS in CHO-eNOS that was abolished in the presence of NOSIP. Subcellular fractionation studies identified eNOS in the caveolin-rich membrane fractions of CHO-eNOS, and coexpression of NOSIP caused a shift of eNOS to intracellular compartments. We conclude that NOSIP is a novel type of modulator that promotes translocation of eNOS from the plasma membrane to intracellular sites, thereby uncoupling eNOS from plasma membrane caveolae and inhibiting NO synthesis.  相似文献   

16.
Zou H  Volonte D  Galbiati F 《PloS one》2012,7(6):e39379
Caveolin-1, the structural protein component of caveolae, acts as a scaffolding protein that functionally regulates signaling molecules. We show that knockdown of caveolin-1 protein expression enhances chemotherapeutic drug-induced apoptosis and inhibits long-term survival of colon cancer cells. In vitro studies demonstrate that caveolin-1 is a novel Ku70-binding protein, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101) to the caveolin-binding domain (CBD) of Ku70 (amino acids 471-478). Cell culture data show that caveolin-1 binds Ku70 after treatment with chemotherapeutic drugs. Mechanistically, we found that binding of caveolin-1 to Ku70 inhibits the chemotherapeutic drug-induced release of Bax from Ku70, activation of Bax, translocation of Bax to mitochondria and apoptosis. Potentiation of apoptosis by knockdown of caveolin-1 protein expression is greatly reduced in the absence of Bax expression. Finally, we found that overexpression of wild type Ku70, but not a mutant form of Ku70 that cannot bind to caveolin-1 (Ku70 Φ→A), limits the chemotherapeutic drug-induced Ku70/Bax dissociation and apoptosis. Thus, caveolin-1 acts as an anti-apoptotic protein in colon cancer cells by binding to Ku70 and inhibiting Bax-dependent cell death.  相似文献   

17.
3-Phosphoinositide-dependent protein kinase 1 (PDK1), a member of the serine/threonine kinase family, has been demonstrated to be crucial for cellular survival, differentiation, and metabolism. Here, we present evidence that PDK1 is associated with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of the caveolae membranes in COS-1. First, we noted the presence of two potential caveolin-1 binding motifs ((141)FFVKLYFTF(149) and (299)YDFPEKFF(306)) in the PDK1 catalytic domain. Using a pull-down approach, we observed that PDK1 interacts physically with caveolin-1 both in vivo and in vitro. Second, we detected the co-localization of PDK1 and caveolin-1 via confocal microscopy. The localization of PDK1 to the plasma membrane was disrupted by caveolin binding. Third, in transient transfection assays, interaction with caveolin-1 induced a substantial reduction in the in vivo serine/threonine phosphorylation of PDK1, whereas the caveolin-1 binding site mutant ((141)FFVKLYFTF(149) and (299)YDFPEKFF(306) change to (141)AFVKLAFTA(149) and (299)ADAPEFLA(306)) did not. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82-101) functionally suppressed the self-phosphorylation and kinase activities of purified recombinant PDK1 protein. Thus, our observations indicated that PDK1 binds to caveolin-1 through its caveolin-binding motifs, and also that the protein-protein interaction between PDK1 and caveolin-1 regulates PDK1 self-phosphorylation, kinase activity, and subcellular localization.  相似文献   

18.
Expression of caveolin-1 enhances cholesterol efflux in hepatic cells   总被引:7,自引:0,他引:7  
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains (caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.  相似文献   

19.
Helical apolipoproteins interact with cellular surface and generate high density lipoprotein (HDL) by removing phospholipid and cholesterol from cells. We have reported that the HDL is generated by this reaction with the fetal rat astrocytes and meningeal fibroblasts but cholesterol is poorly available to this reaction with the astrocytes (Ito et al. 1999. J. Neurochem. 72: 2362;-2369). Partial digestion of the membrane by extracellular sphingomyelinase increased the incorporation of cholesterol into thus-generated HDL from both types of cell. This increase was diminished by supplement of endogenous or exogenous sphingomyelin to the cells. The sphingomyelinase treatment decreased cholesterol in the membrane mainly in the detergent-resisting domain. The intracellular cholesterol used by acylCoA:cholesterol acyltransferase increased by the sphingomyelinase treatment in the absence of apoA-I, more remarkably in the fibroblast than in the astrocytes. ApoA-I suppressed this increase completely in the astrocytes, but only partially in the fibroblast. The effect of the sphingomyelin digestion was more prominent for the apolipoprotein-mediated reaction than the diffusion-mediated cellular cholesterol efflux. Thus, cholesterol molecules restricted by sphingomyelin in the domain of the plasma membrane appear to be primarily used for the HDL assembly upon the apolipoprotein;-cell interaction.  相似文献   

20.
Eight proteins potentially involved in cholesterol efflux [ABCA1, ABCG1, CYP27A1, phospholipid transfer protein (PLTP), scavenger receptor type BI (SR-BI), caveolin-1, cholesteryl ester transfer protein, and apolipoprotein A-I (apoA-I)] were overexpressed alone or in combination in RAW 264.7 macrophages. When apoA-I was used as an acceptor, overexpression of the combination of ABCA1, CYP27A1, PLTP, and SR-BI (Combination I) enhanced the efflux by 4.3-fold. It was established that the stimulation of efflux was due to increased abundance of ABCA1 and increased apoA-I binding to non-ABCA1 sites on macrophages. This combination caused only a small increase of the efflux to isolated HDL. When HDL was used as an acceptor, overexpression of caveolin-1 or a combination of caveolin-1 and SR-BI (Combination II) was the most active, doubling the efflux to HDL, without affecting the efflux to apoA-I. When tested in the in vivo mouse model of cholesterol efflux, overexpression of ABCA1 and Combination I elevated cholesterol export from macrophages to plasma, liver, and feces, whereas overexpression of caveolin-1 or Combination II did not have an effect. We conclude that pathways of cholesterol efflux using apoA-I as an acceptor make a predominant contribution to cholesterol export from macrophages in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号