首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of approaches has recently been employed to investigate how sister cells adopt distinct fates following asymmetric divisions during plant development. Surgical and drug studies have been used to analyze asymmetric divisions during both early embryogenesis in brown algae and pollen development in tobacco. Genetic screens have been used to identify genes in Arabidopsis thaliana that are required for specific asymmetric cell divisions during pollen and root development. These studies indicate that cell polarity and division orientation are closely tied to the process of cell fate specification, and suggest that differential inheritance of determinants and positional information may both be involved in the specification of cell fates following asymmetric cell division.  相似文献   

2.
The basic body plan of the adult plant is established during embryogenesis, resulting in the juvenile form of the seedling. Arabidopsis embryogenesis is distinguished by a highly regular pattern of cell divisions. Some of these divisions are asymmetric, generating daughter cells with different fates. However, their subsequent differentiation might still depend on cell–cell communication to be fully accomplished or maintained. In some cases, cell fate specification solely depends on cell–cell communication that in general plays an important role in the generation of positional information within the embryo. Although auxin-dependent signalling has received much attention, other ways of cell–cell communication have also been demonstrated or suggested. This review focuses on aspects of pattern formation and cell–cell communication during Arabidopsis embryogenesis up to the mid-globular stage of development.  相似文献   

3.
4.
Early embryogenesis is described for the southern corn rootworm, Diabrotica undecimpunctata Howardi Barber, at 24 ± 1°C. During the first four hours following oviposition, the maturation divisions and syngamy are completed. Morphological changes in the second polar body accompany syngamy. Cleavage divisions and energid migration occur during the fourth to the tenth hour. The vitellophags, which appear during cleavage divisions, are distinguished from the blastema-bound nuclei by having smaller, more densely staining nuclei. After completion of a uniform blastoderm (11-14 hour), cell division ceases until the completion of the germ band and the formation of the embryonic membranes (22 hour). This species has a pattern of amnion formation that is different from most Coleoptera but is shared with a few other chrysomelids, some Isoptera, and some Odonata.  相似文献   

5.
The SCARECROW (SCR) gene in Arabidopsis is required for asymmetric cell divisions responsible for ground tissue formation in the root and shoot. Previously, we reported that Zea mays SCARECROW (ZmSCR) is the likely maize ortholog of SCR. Here we describe conserved and divergent aspects of ZmSCR. Its ability to complement the Arabidopsis scr mutant phenotype suggests conservation of function, yet its expression pattern during embryogenesis and in the shoot system indicates divergence. ZmSCR expression was detected early during embryogenesis and localized to the endodermal lineage in the root, showing a gradual regionalization of expression. Expression of ZmSCR appeared to be analogous to that of SCR during leaf formation. However, its absence from the maize shoot meristem and its early expression pattern during embryogenesis suggest a diversification of ZmSCR in the patterning processes in maize. To further investigate the evolutionary relationship of SCR and ZmSCR, we performed a phylogenetic analysis using Arabidopsis, rice and maize SCARECROW-LIKE genes (SCLs). We found SCL23 to be the most closely related to SCR in both eudicots and monocots, suggesting that a gene duplication resulting in SCR and SCL23 predates the divergence of dicots and monocots. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
The pattern of cell division is very regular in Arabidopsis embryogenesis, enabling seedling structures to be traced back to groups of cells in the early embryo. Recessive mutations in the FASS gene alter the pattern of cell division from the zygote, without interfering with embryonic pattern formation: although no primordia of seedling structures can be recognised by morphological criteria at the early-heart stage, all elements of the body pattern are differentiated in the seedling. fass seedlings are strongly compressed in the apical-basal axis and enlarged circumferentially, notably in the hypocotyl. Depending on the width of the hypocotyl, fass seedlings may have up to three supernumerary cotyledons. fass mutants can develop into tiny adult plants with all parts, including floral organs, strongly compressed in their longitudinal axis. At the cellular level, fass mutations affect cell elongation and orientation of cell walls but do not interfere with cell polarity as evidenced by the unequal division of the zygote. The results suggest that the FASS gene is required for morphogenesis, i.e., oriented cell divisions and position-dependent cell shape changes generating body shape, but not for cell polarity which seems essential for pattern formation.  相似文献   

7.
8.
The acquisition and expression of polarity during early embryogenesis underlies developmental pattern. In many multicellular organisms an initial asymmetric division of the zygote is critical to the determination of different cell fates of the early embryonic cells. Zygotes of the marine fucoid algae are initially apolar and become polarized in response to external cues. This results in an initial asymmetric division of the zygote. Subsequent divisions occur in a highly ordered spatial and temporal pattern. A combination of cell biological and biochemical studies is providing new details, and some controversies concerning the mechanisms by which zygotic polarity is acquired and amplified. Here, we discuss some of the more recent studies that are allowing improved understanding of polarization in this system.  相似文献   

9.
A wee1 homolog, wee-1.1, is expressed in both a temporally and spatially restricted pattern during early Caenorhabditis elegans embryogenesis, and is undetectable throughout the remainder of embryogenesis. The wee-1.1 message appears to be zygotically expressed in the somatic founder cell E of the 12-cell embryo. This expression disappears when the E blastomere divides for the first time. The wee-1.1 message then appears transiently in the nuclei of the eight great-granddaughter cells of the AB somatic founder cell, just before these cells divide in the 16-cell embryo. Following this division, the wee-1.1 mRNA is no longer detectable throughout the remainder of embryogenesis. The expression of wee-1.1 in the E blastomere and in the AB progeny appears to be restricted to nuclei in prophase and metaphase of the cell cycle. Analysis of the wee-1.1 mRNA expression pattern in maternal-effect lethal mutants suggests that this expression pattern is restricted to cells of the E and AB fates in the early embryo. This mRNA expression pattern is restricted to a 10-15-min span of embryonic development and may be regulating the timing of crucial cell divisions at this early stage of development.  相似文献   

10.
SUMMARY The morphogenesis of a gut from the endoderm has been well studied among the animal kingdom and is also well described in the nematode Caenorhabditis elegans. But are there other ways to build a nematode intestine? Sulston et al. (1983) described a different intestinal cell lineage in the species Panagrellus redivivus and Turbatrix aceti that includes two programmed cell deaths. However, no details are known about the three‐dimensional (3D) configuration and the role of the cell deaths. Here, we describe the intestinal morphogenesis of P. redivivus and five other nematode species by means of four‐dimensional microscopy, which gives us a 3D representation of gut formation at the cellular level. The morphological pathway of gut formation is highly conserved among these distantly related species. However, we found the P. redivivus pattern in another related species Halicephalobus gingivalis. In this pattern, the intestinal precursors migrate inward in concert with the mesoderm precursors. Based on the observations, we propose a hypothesis that could explain the differences. The positions of the mesoderm precursors create a possible spatial constraint, by which the establishment of bilateral symmetry in the intestine is delayed. This symmetry is corrected by cell migrations; other cells are eliminated and compensated by supplementary cell divisions. This pattern leads to the same result as in the other nematodes: a bilateral symmetrical intestine with nine rings. This illustrates how conserved body plans can be achieved by different developmental mechanisms.  相似文献   

11.
12.
The sequence of events in the functional body pattern formation during the somatic embryo development in cowpea suspensions is described under three heads. Early stages of somatic embryogenesis were characterized by both periclinal and anticlinal cell divisions. Differentiation of the protoderm cell layer by periclinal divisions marked the commencement of somatic embryogenesis. The most critical events appear to be the formation of apical meristems, establishment of apical-basal patterns of symmetry, and cellular organization in oblong-stage somatic embryo for the transition to torpedo and cotyledonary-stage somatic embryos. Two different stages of mature embryos showing distinct morphology, classified based on the number of cotyledons and their ability to convert into plantlets, were visualized. Repeated mitotic divisions of the sub-epidermal cell layers marked the induction of proembryogenic mass (PEM) in the embryogenic calli. The first division plane was periclinally-oriented, the second anticlinally-oriented, and the subsequent division planes appeared in any direction, leading to clusters of proembryogenic clumps. Differentiation of the protoderm layer marks the beginning of the structural differentiation in globular stage. Incipient procambium formation is the first sign of somatic embryo transition. Axial elongation of inner isodiametric cells of the globular somatic embryo followed by the change in the growth axis of the procambium is an important event in oblong-stage somatic embryo. Vacuolation in the ground meristem of torpedo-stage embryo begins the process of histodifferentiation. Three major embryonic tissue systems; shoot apical meristem, root apical meristem, and the differentiation of procambial strands, are visible in torpedo-stage somatic embryo. Monocotyledonary-stage somatic embryo induced both the shoot apical meristem and two leaf primordia compared to the ansiocotyledonary somatic embryo.  相似文献   

13.
Embryogenesis in transgenic Arabidopsis plants with GFP:mTn, a chimeric fusion of soluble shifted green fluorescent protein and a mouse actin binding domain, was studied. Confocal laser scanning microscopy was used to determine patterns of formation and cellular responses during asymmetric cell division. Before such cells divide, the nucleus moves to the position where new cell walls are to be formed. The apicalbasal axis of the embryo develops mainly at the zygote to octant stage, and these events are associated with asymmetric divisions of the zygote and hypophyseal cells. Formation of the radial axis is established from the dermatogen to the globular-stage embryo via tangential cell division within the upper tiers. Bilateral symmetry of the embryo primarily happens at the triangular stage through zig-zag cell divisions of initials of the cotyledonary primordia. All stages of embryogenesis are described in detail here.  相似文献   

14.
Summary Cotyledons excised from seedlings of Cajanus cajan (pigeonpea) were grown on media containing cytokinins (6-benzyladenine, zeatin, and zeatin riboside) and an allied compound, thidiazuron. With the exception of zeatin riboside, initial response in terms of induction of organized structures was very high. However, subsequent regeneration of shoots from cotyledon explants was very poor. Anatomical studies on the regenerating explants were undertaken to study the pattern of morphogenesis. Cytokinins and thidiazuron induced divisions in the epidermal and sub-epidermal cell layers leading to the formation of primary protrusions on the surface. This was followed by the development of foci of high meristematic activity either on the surface or within the primary protrusions. These foci differentiated into embryo-like structures or shoot meristem-like structures. Mostly aberrant shoots, with poorly developed apical meristems, regenerated from these structures.  相似文献   

15.
4D microscopic observations of Caenorhabditis elegans development show that the nematode uses an unprecedented strategy for development. The embryo achieves pattern formation by sorting cells, through far-ranging movements, into coherent regions before morphogenesis is initiated. This sorting of cells is coupled to their particular fate. If cell identity is altered by experiment, cells are rerouted to positions appropriate to their new fates even across the whole embryo. This cell behavior defines a new mechanism of pattern formation, a mechanism that is also found in other animals. We call this new mechanism "cell focusing". When the fate of cells is changed, they move to new positions which also affect the shape of the body. Thus, this process is also important for morphogenesis.  相似文献   

16.
Culture of Papaver somniferum in vitro was used for a characterisation of cell surface structures and mode of cell adhesion and cell separation during cell differentiation and plant regeneration in somatic embryogenesis and shoot organogenesis. In early stages of somatic embryogenesis, cell type-specific and developmentally regulated change of cell morphogenesis was demonstrated. Cell wall of separated embryonic cells were self-covered with external tubular network, whereas morphogenetic co-ordination of adhered cells of somatic proembryos was supported by fine and fibrillar external cell wall continuum of peripheral cells, interconnecting also local sites of cell separation. Such type of cell contacts disappeared during histogenesis, when the protodermis formation took place. Tight cell adhesion of activated cells with polar cell wall thickening, and production of extent mucilage on the periphery were the crucial aspects of meristemoids. Fine amorphous layer covered developing shoot primordia, but we have not observed such comparable external fibrillar network. On the contrary intercellular separation of differentiated cells in regenerated organs, and accepting distinct developmental system of somatic embryogenesis and shoot organogenesis, cell adhesion in early stages and ultrastructural changes associated with tissue disorganisation, and the subsequent reorganisation into either embryos or shoots appear to be regulatory morphogenetical events of plant regeneration in vitro.  相似文献   

17.
Gunning  B. E. S.  Hughes  J. E.  Hardham  A. R. 《Planta》1978,143(2):121-144
The root of the water fern Azolla is a compact higher-plant organ, advantageous for studies of cell division, cell differentiation, and morphogenesis. The cell complement of A. filiculoides Lam. and A. pinnata R.Br. roots is described, and the lineages of the cell types, all derived ultimately from a tetrahedral apical cell, are characterised in terms of sites and planes of cell division within the formative zone, where the initial cells of the cell files are generated. Subsequent proliferation of the initial cells is highly specific, each cell type having its own programme of divisions prior to terminal differentiation. Both formative and proliferative divisions (but especially the former) occur in regular sequences. Two enantiomorphic forms of root develop, with the dispositions of certain types of cell correlating with the direction, dextrorse or sinistrorse, of the cell-division sequence in the apical cells. Root growth is determinate, the apical cell dividing about 55 times, and its cell-cycle duration decreasing from an initial 10 h to about 4 h during the major phase of root development. Sites of proliferation progress acropetally during aging, but do not penetrate into the zone of formative divisions. The detailed portrait of root development that was obtained is discussed with respect to genetic and epigenetic influences; quantal and non-quantal cell cycles; variation in cell-cycle durations; relationships between cell expansion and cell division: the role of the apical cell; and the limitation of the total number of mitotic cycles during root formation.  相似文献   

18.
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.

Plant cell cycle and division are linked to specific cell fates and respond to growth-related cues, such as metabolic state, cell size, cell shape, and mechanical stress.  相似文献   

19.
Silk glands of the mulberry silkworm Bombyx mori are long and paired structures originating from the labial region and are anatomically and physiologically divided into three major compartments, the anterior, middle and posterior silk glands. The silk gland morphogenesis is complete by 8 days post egg laying. Extensive growth of silk glands during the larval stages is due to increase in tissue mass and not cell number. The cells in a completely formed silk gland pursue an endoreplicative cell cycle, and the genome undergoes multiple rounds of replication without mitosis or nuclear division. The expression patterns of cyclin B (mitotic cyclin) and cyclin E (G1 cyclin, essential for G1/S transition in both mitotic and endoreplicative cell cycles) in the course of silk gland development revealed that mitotic cell divisions take place only in the apex of the growing silk gland. However, the persistence of another mitotic focus in the middle silk gland even when the growing apex has moved well past this zone suggested the continued operation of mitosis for a while in this restricted region. The lack of cyclin B expression and abundance of cyclin E in the rest of the areas confirmed an alternation of the G1 and S phases of the cell cycle without an intervening mitotic phase. No expression of cyclin B was noticed anywhere in the silk glands after stage 25 of embryogenesis, indicating a complete switch over to the endomitotic mode of the cell cycle. The onset of expression of various genes encoding different silk proteins correlated with the onset of endomitotic events.Edited by D. Tautz  相似文献   

20.
Many aspects of metazoan morphogenesis find parallels in the communal behavior of microorganisms. The cellular slime mold D. discoideum has long provided a metaphor for multicellular embryogenesis. However, the spatial patterns in D.d. colonies are generated by an intercellular communication system based on diffusible morphogens, whereas the interactions between embryonic cells are more often mediated by direct cell contact. For this reason, the myxobacteria have emerged as a contending system in which to study spatial pattern formation, for their colony strutures rival those of D.d. in complexity, yet communication between cells in a colony is carried out by direct cell contacts. Here I sketch some of the progress my laboratory has made in modeling the life cycle of these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号