首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA consensus sequence for topoisomerase II cleavage sites was derived previously based on a statistical analysis of the nucleotide sequences around 16 sites that can be efficiently cleaved by Drosophila topoisomerase II (Sander, M., and Hsieh, T. (1985) Nucleic Acids Res. 13, 1057-1072). A synthetic 21-mer DNA sequence containing this cleavage consensus sequence was cloned into a plasmid vector, and DNA topoisomerase II can cleave this sequence at the position predicted by the cleavage consensus sequence. DNase I footprint analysis showed that topoisomerase II can protect a region of approximately 25 nucleotides in both strands of the duplex DNA, with the cleavage site located near the center of the protected region. Similar correlation between the DNase I footprints and strong topoisomerase II cleavage sites has been observed in the intergenic region of the divergent HSP70 genes. This analysis therefore suggests that the strong DNA cleavage sites of Drosophila topoisomerase II likely correspond to specific DNA-binding sites of this enzyme. Furthermore, the extent of DNA contacts made by this enzyme suggests that eucaryotic topoisomerase II, in contrast to bacterial DNA bacterial DNA gyrase, cannot form a complex with extensive DNA wrapping around the enzyme. The absence of DNA wrapping is probably the mechanistic basis for the lack of DNA supercoiling action for eucaryotic topoisomerase II.  相似文献   

2.
Single-strand DNA cleavages by eukaryotic topoisomerase II   总被引:7,自引:0,他引:7  
A new purification method for eukaryotic type II DNA topoisomerase (EC 5.99.1.3) is described, and the avian enzyme has been purified and characterized. An analysis of the cleavage reaction has revealed that topoisomerase II can be trapped as a DNA-enzyme covalent complex containing DNA with double-stranded and single-stranded breaks. The data indicate that DNA cleavage by topoisomerase II proceeds by two asymmetric single-stranded cleavage and resealing steps on opposite strands (separated by 4 bp) with independent probabilities of being trapped upon addition of a protein denaturant. Single-strand cleavages were directly demonstrated at both strong and weak topoisomerase II sites. Thus, a match to the vertebrate topoisomerase II consensus sequence (sequence; see text) (N is any base, and cleavage occurs between -1 and +1) [Spitzner, J.R., & Muller, M.T. (1988) Nucleic Acids Res. 16, 5533-5556)] does not predict whether a cleavage site will be single stranded or double stranded; however, sites cleaved by topoisomerase II that contain two conserved consensus bases (G residue at +2 and T at +4) generally yield double-strand cleavage whereas recognition sites lacking these two consensus elements yield single-strand cleavages. Finally, single-strand cleavages with topoisomerase II do not appear to be an artifact caused by damaged enzyme molecules since topoisomerase II in freshly prepared, crude extracts also shows the property of single-strand cleavages.  相似文献   

3.
Although cobalt is an essential trace element for humans, the metal is genotoxic and mutagenic at higher concentrations. Treatment of cells with cobalt generates DNA strand breaks and covalent protein-DNA complexes. However, the basis for these effects is not well understood. Since the toxic events induced by cobalt resemble those of topoisomerase II poisons, the effect of the metal on human topoisomerase IIalpha was examined. The level of enzyme-mediated DNA scission increased 6-13-fold when cobalt(II) replaced magnesium(II) in cleavage reactions. Cobalt(II) stimulated cleavage at all DNA sites observed in the presence of magnesium(II), and the enzyme cut DNA at several "cobalt-specific" sites. The increased level of DNA cleavage in the presence of cobalt(II) was partially due to a decrease in the rate of enzyme-mediated religation. Topoisomerase IIalpha retained many of its catalytic properties in reactions that included cobalt(II), including sensitivity to the anticancer drug etoposide and the ability to relax and decatenate DNA. Finally, cobalt(II) stimulated topoisomerase IIalpha-mediated DNA cleavage in the presence of magnesium(II) in purified systems and in human MCF-7 cells. These findings demonstrate that cobalt(II) is a topoisomerase II poison in vitro and in cultured cells and suggest that at least some of the genotoxic effects of the metal are mediated through topoisomerase IIalpha.  相似文献   

4.
We demonstrate that the simian virus 40 genome contains a single MAR (matrix association region) that maps within a large T-antigen coding region (nucleotides 4071 to 4377). This region contains topoisomerase II cleavage sites, exhibits sequence similarity with cellular MARs, and recognizes the same evolutionarily conserved, abundant nuclear binding sites seen by cellular MARs.  相似文献   

5.
We have identified two classes of in vivo topoisomerase II cleavage sites in the Drosophila histone gene repeat. One class co-localizes with DNase I-hypersensitive regions and another novel class maps to a subset of consecutive nucleosome linker sites in the scaffold-associated region (SAR) of the histone gene loop. Prominent topoisomerase II cleavage is also observed in one of the linker regions of the two nucleosomes spanning satellite III, a centromeric SAR-like DNA sequence with a repeat length of 359 bp. At the sequence level, in vivo topoisomerase II cleavage is highly site specific. Comparison of 10 nucleosome linker sites defines an in vivo cleavage sequence whose major characteristic is a prominent GC-rich core. These GC-rich cleavage sites are flanked by extensive arrays of oligo(dA).oligo(dT) tracts characteristic of SAR sequences. Treatment of cells with distamycin selectively enhances cleavage at nucleosome linker sites of the SAR and satellite regions, suggesting that AT-rich sequences flanking cleavage sites may be involved in determining topoisomerase II activity in the cell. These observations provide evidence for the association of topoisomerase II with SARS in vivo.  相似文献   

6.
7.
We have assessed the ability of nucleosomes to influence the formation of mammalian topoisomerase II-DNA complexes by mapping the sites of cleavage induced by four unrelated topoisomerase II inhibitors in naked versus nucleosome-reconstituted SV40 DNA. DNA fragments were reconstituted with histone octamers from HeLa cells by the histone exchange method. Nucleosome positions were determined by comparing micrococcal nuclease cleavage patterns of nucleosome-reconstituted and naked DNA. Three types of DNA regions were defined: 1) regions with fixed nucleosome positioning; 2) regions lacking regular nucleosome phasing; and 3) a region around the replication origin (from position 5100 to 600) with no detectable nucleosomes. Topoisomerase II cleavage sites were suppressed in nucleosomes and persisted or were enhanced in linker DNA and in the nucleosome-free region around the replication origin. Incubation of reconstituted chromatin with topoisomerase II protected nucleosome-free regions from micrococcal nuclease cleavage without changing the overall micrococcal nuclease cleavage pattern. Thus, the present results indicate that topoisomerase II binds preferentially to nucleosome-free DNA and that the presence of nucleosomes at preferred DNA sequences influences drug-induced DNA breaks by topoisomerase II inhibitors.  相似文献   

8.
The distributions of DNA cleavage sites induced by topoisomerase II in the presence or absence of specific drugs were mapped in the simian virus 40 genome. The drugs studied were 5-iminodaunorubicin, amsacrine (m-AMSA), teniposide (VM-26) and 2-methyl-9-hydroxyellipticinium; each produced a distinctive pattern of enhanced cleavage. Consistently intense cleavage, both in the presence and in the absence of drugs, occurred in the nuclear matrix-associated region. Since topoisomerase II is a major constituent of the nuclear matrix, and cleavage complexes include a covalent link between topoisomerase II and DNA, the findings suggest that topoisomerase II may function to attach DNA to the nuclear matrix. Cleavage usually occurred on both DNA strands with the expected four base-pair 5' stagger, and strong sites tended to occur within A/T runs such as have been associated with binding to the nuclear scaffold. Intense cleavage was present also in the replication termination region, but was absent from the vicinity of the replication origin. Cleavage intensities were found to change with time in a manner that depended both on the site and on the drug, suggesting that topoisomerase II can move along the DNA from a kinetically preferred site to a thermodynamically preferred site.  相似文献   

9.
Antitumor drugs, such as anthracyclines, interfere with mammalian DNA topoisomerase II by forming a ternary complex, DNA-drug-enzyme, in which DNA strands are cleaved and covalently linked to the enzyme. In this work, a synthetic 36-bp DNA oligomer derived from SV40 and mutated variants were used to determine the effects of base mutations on DNA cleavage levels produced by murine topoisomerase II with and without idarubicin. Although site competition could affect cleavage levels, mutation effects were rather similar among several cleavage sites. The major sequence determinants of topoisomerase II DNA cleavage without drugs are up to five base pairs apart from the strand cut, suggesting that DNA protein contacts involving these bases are particularly critical for DNA site recognition. Cleavage sites with adenines at positions -1 were detected without idarubicin only under conditions favouring enzyme binding to DNA, showing that these sites are low affinity sites for topoisomerase II DNA cleavage and/or binding. Moreover, the results indicated that the sequence 5'-(A)TA/(A)-3' (the slash indicates the cleaved bond, parenthesis indicate conditioned preference) from -3 to +1 positions constitutes the complete base sequence preferred by anthracyclines. An important finding was that mutations that improve the fit to the above consensus on one strand can also increase cleavage on the opposite strand, suggesting that a drug molecule may effectively interact with one enzyme subunit only and trap the whole dimeric enzyme. These findings documented that DNA recognition by topoisomerase II may occur at one or the other strand, and not necessarily at both of them, and that the two subunits can act cooperatively to cleave a double helix.  相似文献   

10.
Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being the site of cleavage). On the noncleaved strand, the protected region extends from +13 to -9. Similar nuclease protection is observed for a mutant topoisomerase (containing a Tyr ---- Phe substitution at the active site amino acid 274) that is catalytically inert and does not form the covalent intermediate. Thus, vaccinia topoisomerase is a specific DNA binding protein independent of its competence in transesterification. By studying the cleavage of a series of 12-mer DNA duplexes in which the position of the CCCTTdecreases motif within the substrate is systematically phased, the "minimal" substrate for cleavage has been defined; cleavage requires six nucleotides upstream of the cleavage site and two nucleotides downstream of the site. An analysis of the cleavage of oligomer substrates mutated singly in the CCCTT sequence reveals a hierarchy of mutational effects based on position within the pentamer motif and the nature of the sequence alteration.  相似文献   

11.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

12.
Several classes of antitumor drugs are known to stabilize topoisomerase complexes in which the enzyme is covalently bound to a terminus of a DNA strand break. The DNA cleavage sites generally are different for each class of drugs. We have determined the DNA sequence locations of a large number of drug-stimulated cleavage sites of topoisomerase II, and find that the results provide a clue to the possible structure of the complexes and the origin of the drug-specific differences. Cleavage enhancements by VM-26 and amsacrine (m-AMSA), which are representative of different classes of topoisomerase II inhibitors, have strong dependence on bases directly at the sites of cleavage. The preferred bases were C at the 3' terminus for VM-26 and A at the 5' terminus for m-AMSA. Also, a region of dyad symmetry of 12 to 16 base pairs was detected about the enzyme cleavage positions. These results are consistent with those obtained with doxorubicin, although in the case of doxorubicin, cleavage requires the presence of an A at the 3' terminus of at least one the pair of breaks that constitute a double-strand cleavage (Capranico et al., Nucleic Acids Res., 1990, 18: 6611). These findings suggest that topoisomerase II inhibitors may stack with one or the other base pair flanking the enzyme cleavage sites.  相似文献   

13.
The sequence dependence of Drosophila topoisomerase II supercoil relaxation and binding activities has been examined. The DNA substrates used in binding experiments were two fragments from Drosophila heat shock locus 87A7. One of these DNA fragments includes the coding region for the heat shock protein hsp70, and the other includes the intergenic non-coding region that separates two divergently transcribed copies of the hsp70 gene at the locus. The intergenic region was previously shown to have a much higher density of topoisomerase cleavage sites than the hsp70 coding region. Competition nitrocellulose filter binding assays demonstrate a preferential binding of the intergene fragment, and that binding specificity increases with increasing ionic strength. Dissociation kinetics indicate a greater kinetic stability of topoisomerase II complexes with the intergene DNA fragment. To study topoisomerase II relaxation activity, we used supercoiled plasmids that contained the same fragments from locus 87A7 cloned as inserts. The relative relaxation rates of the two plasmids were determined under several conditions of ionic strength, and when the plasmid substrates were included in separate reactions or when they were mixed in a single reaction. The relaxation properties of these two plasmids can be explained by a coincidence of high-affinity binding sites, strong cleavage sites, and sites used during the catalysis of strand passage events by topoisomerase II. Sequence dependence of topoisomerase II catalytic activity may therefore parallel the sequence dependence of DNA cleavage by this enzyme.  相似文献   

14.
Topoisomerase II cleavage in chromatin   总被引:12,自引:0,他引:12  
We have examined the effect of the anti-tumor drug VM-26 on purified Drosophila topoisomerase II, and used this drug to map (putative) topoisomerase II cleavage sites in chromatin. These studies indicate that VM-26 interferes with the strand breakage-rejoining catalytic cycle. VM-26 appears to stabilize the topoisomerase-II-cleavable complex and markedly enhances the formation of double-strand breaks in naked DNA. VM-26 also stimulates the formation of double-strand breaks in isolated Drosophila nuclei. Analysis of the parameters of the VM-26-stimulated cleavage reaction in nuclei strongly suggests that the double-strand scissions are generated by endogenous topoisomerase II. Finally, we have examined the distribution of (putative) cleavage sites for endogenous topoisomerase II in the chromatin of the 87A7 heat shock locus and the histone repeat unit. We have found that there are prominent VM-26-induced cleavage products from the 5' ends of the 87A7, the two heat shock protein 70 genes, and in the intergenic spacer separating these genes. Moreover, the pattern of VM-26-induced cleavage products is altered in nuclei prepared from heat-shocked cells. In the case of the histone repeat unit, only minor VM-26-induced cleavage products are observed in nuclei (in spite of the fact that experiments on naked DNA indicate that the histone repeat contains many major cleavage sites for purified topoisomerase II). These findings suggest that the nucleoprotein organization of different DNA segments may be important in determining whether specific sites are accessible to endogenous topoisomerase II in nuclei.  相似文献   

15.
The pattern of sites for cleavage mediated by topoisomerase II was determined in 830 kb of cloned DNA from the Drosophila X chromosome, with the objectives of comparing it with mapped structural and functional landmarks and examining if the correlations with such landmarks reported in individual loci can be generalized to a region approximately 100 times longer. The relative frequencies of topoisomerase II cleavage sites in 247 restriction fragments from 67 clones were quantified by hybridization with probes prepared from DNA fragments which abutted all cleavage sites in each clone, selected through the covalently bound topoisomerase II subunit; the specificity and quantitative nature of this method were demonstrated using a plasmid DNA model. The 12 restriction fragments with strong nuclear scaffold attachment (SAR) activity, of which seven possess autonomous replication (ARS) activity, show statistically strong coincidence or contiguity ( P </=0.11) with regions of high topoisomerase II cleavage site frequency. These regions show no correlation with repetitive sequence or A/T or C/G content and some extend over >10 kb; their sensitivity is therefore unlikely to be due to alternating purine-pyrimidine repeats or regions of Z conformation, which are preferred motifs. The hypothesis that they possess intrinsic curvature is consistent with the similarity of their length and spacing to regions of predicted curvature in the 315 kb DNA of Saccharomyces cerevisiae chromosome III and with the reported strong binding preference of topoisomerase II for curved DNA. The topoisomerase II cleavage pattern in this DNA further shows that its relationships to functional properties seen in individual loci, especially to MAR/SAR and ARS activity and to the restricted accessibility of DNA to topoisomerase II in vivo, can be generalized to much longer regions of the genome.  相似文献   

16.
L Yang  T C Rowe  E M Nelson  L F Liu 《Cell》1985,41(1):127-132
The antitumor drug, m-AMSA (4'-(9-acridinylamino)-methanesulfon-m-anisidide), is known to interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by blocking the enzyme-DNA complex in its putative cleavable state. Treatment of SV40 virus infected monkey cells with m-AMSA resulted in both single- and double-stranded breaks on SV40 viral chromatin. These strand breaks are unusual because they are covalently associated with protein. Immunoprecipitation results suggest that the covalently linked protein is DNA topoisomerase II. These results are consistent with the proposal that the drug action in vivo involves the stabilization of a cleavable complex between topoisomerase II and DNA in chromatin. Mapping of these double-stranded breaks on SV40 viral DNA revealed multiple topoisomerase II cleavage sites. A major topoisomerase II cleavage site was preferentially induced during late infection and was mapped in the DNAase I hypersensitive region of SV40 chromatin.  相似文献   

17.
We have investigated cauliflower (Brassica oleracea) topoisomerase II with respect to its interaction with DNA and demonstrate that the enzyme shares the characteristics of topoisomerase II purified from a variety of phylogenetically remote organisms. In the presence of the 2-nitroimidazole Ro 15-0216, cauliflower topoisomerase II-mediated DNA cleavage is extensively stimulated (approximately 20-fold) only at a site recognized as a major cleavage site for the enzyme in the absence of drug. The conservation of the enzyme's DNA specificity in the presence of Ro 15-0216 is in contrast to the effect exerted by traditional topoisomerase II inhibitors, which cause enzyme-mediated cleavage to take place at a multiple number of DNA sites. Ro 15-0216 may therefore prove useful as a tool in the elucidation of the enzyme's DNA interaction sites and its involvement in nucleic acid metabolism in plant cells.  相似文献   

18.
Cleavage of linear duplex DNA by purified vaccinia virus DNA topoisomerase I occurs at a conserved sequence element (5'-C/T)CCTT decreases) in the incised DNA strand. Oligonucleotides spanning the high affinity cleavage site CCCTT at nucleotide 2457 in pUC19 DNA are cleaved efficiently in vitro, but only when hybridized to a complementary DNA molecule. As few as 6 nucleotides proximal to the cleavage site and 6 nucleotides downstream of the site are sufficient to support exclusive cleavage at the high affinity site (position +1). Single nucleotide substitutions within the consensus pentamer have deleterious effects on the equilibria of the topoisomerase binding and DNA cleavage reactions. The effects of base mismatch within the pentamer are more dramatic than are the effects of mutations that preserve base complementarity. Competition experiments indicate that topoisomerase binds preferentially to DNA sites containing the wild-type pentamer element. Single-stranded DNA containing the sequence CCCTT in the cleaved stand is a more effective competitor than is single-stranded DNA containing the complementary sequence in the noncleaved strand.  相似文献   

19.
The PRL gene is expressed at a high basal level in rat pituitary tumor GH3 cells, and this basal level enhancement of PRL gene expression is maintained through a Ca2+-calmodulin-dependent mechanism. We have now examined whether the enzyme, DNA topoisomerase II, which has been shown to be phosphorylated by a Ca2+-calmodulin-dependent protein kinase, plays a role in the Ca2+-calmodulin-dependent basal level enhancement of PRL gene expression. The topoisomerase II inhibitor, novobiocin, at concentrations in the range of 35-140 microM, effectively blocked the ability of Ca2+ to increase PRL mRNA levels. Examination of the effects of novobiocin on the levels of protein synthesis, glucose-regulated protein (GRP) 78 mRNA, histone 3 mRNA, and 18S ribosomal RNA indicated that the drug selectivity inhibited PRL gene expression. Two other topoisomerase II inhibitors, m-AMSA and VM26, also diminished the Ca2+-induced levels of PRL mRNA at concentrations (100-400 nM) that did not lower total mRNA levels. We then examined whether topoisomerase II interacted nonrandomly with DNA from the 5' transcribed and 5'-flanking region of the rat PRL gene by in vitro mapping of topoisomerase II DNA cleavage sites. In initial assays with a 10.5 kilobase (kb) PRL genomic DNA fragment containing 3.5 kb of 5'-transcribed DNA and 7 kb of 5'-flanking DNA, we detected 4 major cleavage sites in the following regions: site 1, +1500 to +1600; site 2, +1 to -100; site 3, -1200 to -1300; and site 4, -2900 to -3000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Although the formation of a covalent enzyme-cleaved DNA complex is a prerequisite for the essential functions of topoisomerase II, this reaction intermediate has the potential to destabilize the genome. Consequently, all known eukaryotic type II enzymes maintain this complex at a low steady-state level. Recently, however, a novel topoisomerase II was discovered in Paramecium bursaria chlorella virus-1 (PBCV-1) that has an exceptionally high DNA cleavage activity [Fortune et al. (2001) J. Biol. Chem. 276, 24401-24408]. If robust DNA cleavage is critical to the physiological functions of chlorella virus topoisomerase II, then this remarkable characteristic should be conserved throughout the viral family. Therefore, topoisomerase II from Chlorella virus Marburg-1 (CVM-1), a distant family member, was expressed in yeast, isolated, and characterized. CVM-1 topoisomerase II is 1058 amino acids in length, making it the smallest known type II enzyme. The viral topoisomerase II displayed a high DNA strand passage activity and a DNA cleavage activity that was approximately 50-fold greater than that of human topoisomerase IIalpha. High DNA cleavage appeared to result from a greater rate of scission rather than promiscuous DNA site utilization, inordinately tight DNA binding, or diminished religation rates. Despite the fact that CVM-1 and PBCV-1 topoisomerase II share approximately 67% amino acid sequence identity, the two enzymes displayed clear differences in their DNA cleavage specificity/site utilization. These findings suggest that robust DNA cleavage is intrinsic to the viral enzyme and imply that chlorella virus topoisomerase II plays a physiological role beyond the control of DNA topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号