首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminium (Al) toxicity is an important limitation to barley (Hordeum vulgare L.) on acid soil. Al-resistant cultivars of barley detoxify Al externally by secreting citrate from the roots. To link the genetics and physiology of Al resistance in barley, genes controlling Al resistance and Al-activated secretion of citrate were mapped. An analysis of Al-induced root growth inhibition from 100 F2 seedlings derived from an Al-resistant cultivar (Murasakimochi) and an Al-sensitive cultivar (Morex) showed that a gene associated with Al resistance is localized on chromosome 4H, tightly linked to microsatellite marker Bmag353. Quantitative trait locus (QTL) analysis from 59 F4 seedlings derived from an F3 plant heterozygous at the region of Al resistance on chromosome 4H showed that a gene responsible for the Al-activated secretion of citrate was also tightly linked to microsatellite marker Bmag353. This QTL explained more than 50% of the phenotypic variation in citrate secretion in this population. These results indicate that the gene controlling Al resistance on barley chromosome 4H is identical to that for Al-activated secretion of citrate and that the secretion of citrate is one of the mechanisms of Al resistance in barley. The identification of the microsatellite marker associated with both Al resistance and citrate secretion provides a valuable tool for marker-assisted selection of Al-resistant lines.  相似文献   

2.
Excess aluminum (Al) ions and phosphorus (P) deficiency are the key factors that limit plant growth in acid soils. Secretion of organic acids (OA) from roots has been proposed as an Al-resistance mechanism. Nonetheless, the correlation between Al resistance and this mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive genotypes. To elucidate the mechanisms responsible for plant adaptability to acid soils, we studied the secretion of OA from roots of Stylosanthes in response to high-Al and low-P stresses using six different genotypes. Relative root inhibition by 50?µM Al ranged from 25–71% and differed significantly among six Stylosanthes genotypes. Al treatment induced the secretion of citrate from the roots of Stylosanthes seedling in a dose- and time-dependent manner. Moreover, the secretion rate was significantly higher in the Al-resistant genotype. On the other hand, inhibition of Al-induced citrate secretion by phenylisothiocyanate or 9-anthracenecarboxylic acid resulted in an increase in Al content in Stylosanthes root apices. P deficiency also induced citrate secretion from Stylosanthes seedling roots. Furthermore, citrate secretion was much more robust with exposure to both excess-Al and P-deficiency stresses than under either stress alone. Unlike Al-induced citrate secretion, which was rapid, low-P-induced secretion was a slow process, with significant increases in secretion only becoming evident after 6 d of treatment with free phosphate. The lag between treatment with Al and citrate secretion was approximately 4 h. These results suggest that the secretion of citrate is a mechanism for resistance to both excess-Al and low-P stresses in Stylosanthes.  相似文献   

3.
An aluminum-activated citrate transporter in barley   总被引:16,自引:0,他引:16  
Soluble ionic aluminum (Al) inhibits root growth and reduces crop production on acid soils. Al-resistant cultivars of barley (Hordeum vulgare L.) detoxify Al by secreting citrate from the roots, but the responsible gene has not been identified yet. Here, we identified a gene (HvAACT1) responsible for the Al-activated citrate secretion by fine mapping combined with microarray analysis, using an Al-resistant cultivar, Murasakimochi, and an Al-sensitive cultivar, Morex. This gene belongs to the multidrug and toxic compound extrusion (MATE) family and was constitutively expressed mainly in the roots of the Al-resistant barley cultivar. Heterologous expression of HvAACT1 in Xenopus oocytes showed efflux activity for (14)C-labeled citrate, but not for malate. Two-electrode voltage clamp analysis also showed transport activity of citrate in the HvAACT1-expressing oocytes in the presence of Al. Overexpression of this gene in tobacco enhanced citrate secretion and Al resistance compared with the wild-type plants. Transiently expressed green fluorescent protein-tagged HvAACT1 was localized at the plasma membrane of the onion epidermal cells, and immunostaining showed that HvAACT1 was localized in the epidermal cells of the barley root tips. A good correlation was found between the expression of HvAACT1 and citrate secretion in 10 barley cultivars differing in Al resistance. Taken together, our results demonstrate that HvAACT1 is an Al-activated citrate transporter responsible for Al resistance in barley.  相似文献   

4.
The correlation between organic acid anion release and Al content was examined in two maize (Zea mays L.) inbred lines, Cat 100-6 (Al-resistant) and S 1587-17 (Al-sensitive) treated with anion channel antagonists and La3+, a cation channel blocker. In the intact roots of Al-resistant maize, the Al-induced excretion of citrate was inhibited by the anion channel antagonists niflumic acid, anthracene-9-carboxylic and ethacrinic acid. Citrate release in excised root apices was reduced by 60% in the presence of 15 microM niflumic acid, while the Al content increased by 42%. Nevertheless, Cat 100-6 accumulated less Al than S 1587-17 when the rate of citrate release was similar in both lines, indicating that other mechanisms of Al-resistance are operating in Cat 100-6. The presence of 60 microM La3+ did not change the rate of citrate release, but the Al content in excised root apices of Al-resistant plants was reduced by 70%. These results suggest that the Al distributed uniformly in the roots does not contribute to citrate release and possibly the activity of anion channels is correlated with the free activities of extracellular Al3+ close to anion channels.  相似文献   

5.
Root apical aluminum (Al) exclusion via Al-activated root citrate exudation is widely accepted as the main Al-resistance mechanism operating in maize (Zea mays) roots. Nonetheless, the correlation between Al resistance and this Al-exclusion mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive maize lines. In this study, we conducted a comparative study of the physiology of Al resistance using six different maize genotypes that capture the range of maize Al resistance and differ significantly in their genetic background (three Brazilian and three North American genotypes). In these maize lines, we were able to establish a clear correlation between root tip Al exclusion (based on root Al content) and Al resistance. Both Al-resistant genotypes and three of the four Al-sensitive lines exhibited a significant Al-activated citrate exudation, with no evidence for Al activation of root malate or phosphate release. There was a lack of correlation between differential Al resistance and root citrate exudation for the six maize genotypes; in fact, one of the Al-sensitive lines, Mo17, had the largest Al-activated citrate exudation of all of the maize lines. Our results indicate that although root organic acid release may play a role in maize Al resistance, it is clearly not the only or the main resistance mechanism operating in these maize roots. A number of other potential Al-resistance mechanisms were investigated, including release of other Al-chelating ligands, Al-induced alkalinization of rhizosphere pH, changes in internal levels of Al-chelating compounds in the root, and Al translocation to the shoot. However, we were unsuccessful in identifying additional Al-resistance mechanisms in maize. It is likely that a purely physiological approach may not be sufficient to identify these novel Al-resistance mechanisms in maize and this will require an interdisciplinary approach integrating genetic, molecular, and physiological investigations.  相似文献   

6.
Accumulation of some proteins isolated from the cell wall of roots of the Al-sensitive (Alfor) and the Al-resistant (Bavaria) barley cultivars were followed during treatment with different Al3+ concentrations, pH changes of the root medium, and several heavy metals (Cu2+, Cd2+, Co2+). SDS-PAGE analysis revealed an Al-induced accumulation of polypeptides with molecular mass of 14, and 16 kDa and a group of polypeptides around 27 kDa. The accumulation pattern of Al-induced polypeptides was very similar in both cultivars but in the Al-resistant Bavaria it was induced at lower Al concentration and earlier than it was in the Al-sensitive cultivar Alfor. Changes in pH values of root medium (pH 3.5–6.5) did not show any effect on the accumulation of Al-induced cell wall polypeptides either in Al-sensitive or in Al-tolerant barley cultivar. Heavy metals (Cu, Cd, and Co) at concentration of 10 μM resulted in similar accumulation of individual polypeptides as we found after Al treatment. In comparison to Al, quantitative differences in polypeptides accumulation induced by Cu, Cd and Co were less expressed that of Al treatment. More pronounced accumulation and earlier induction of individual cell wall polypeptides in roots of Al-resistant barley cultivar than in Al-sensitive, might indicate some possible role of these polypeptides in plant resistance to Al stress.  相似文献   

7.
Fourteen soybean ( Glycine max [L.] Merr.) cultivars were analysed and found to differ considerably in aluminium (Al) resistance. The cultivars Suzunari (Al-resistant) and Shishio (Al-sensitive) were selected for further analysis of physiological mechanisms of Al-resistance. The relative root growth of Shishio was 48% compared to 76% for Suzunari in response to 15 μ M Al (24 h). Aluminium accumulation and Al-induced callose formation in root apices were 50 and 25% of that in Suzunari, respectively. Al inhibited both Suzunari and Shishio during the first 6 h of exposure. However, the root growth inhibition was further increased in Shishio but not in Suzunari, suggesting an Al-induced Al-resistant mechanism operating in Suzunari. Organic acid analysis in root exudates of both cultivars revealed that they specifically exuded citrate in response to Al. However, the citrate exudation rate was significantly higher in Suzunari during the 6 h/24 h Al treatment, which was 52/330 compared to Shishio's 26/118 (nmol [g root fresh weight]−1 [6 h]−1), respectively. This Al-induced citric acid exudation was found to be specific for Al, as several other metals failed to induce citrate exudation in both cultivars. Fourteen days of P deficiency did not elicit citrate excretion in both cultivars, while application of Al to P-deficient plants rapidly induced citrate exudation in both cultivars, confirming the specificity of the response of these soybean cultivars to Al. To our knowledge, this is the first report demonstrating an Al-exclusion mechanism in soybean cultivars, which is conferred by enhanced and specific Al-induced exudation of citrate.  相似文献   

8.

Background and Aims

Aluminium (Al) toxicity is one of the factors limiting crop production on acid soils. However, genotypic differences exist among plant species or cultivars in response to Al toxicity. This study aims to investigate genotypic differences among eight cultivars of tatary buckwheat (Fagopyrum tataricum) for Al resistance and explore the possible mechanisms of Al resistance.

Methods

Al resistance was evaluated based on relative root elongation (root elongation with Al/root elongation without Al). Root apex Al content, pectin content and exudation of root organic acids were determined and compared.

Key Results

Genotypic differences among the eight cultivars were correlated with exclusion of Al from the root apex. However, there was a lack of correlation between Al exclusion and Al-induced oxalate secretion. Interestingly, cell-wall pectin content of the root apex was generally lower in Al-resistant cultivars than in Al-sensitive cultivars. Although we were unable to establish a significant correlation between Al exclusion and pectin content among the eight cultivars, a strong correlation could be established among six cultivars, in which the pectin content in the most Al-resistant cultivar ‘Chuan’ was significantly lower than that in the most Al-sensitive cultivar ‘Liuku2’. Furthermore, root apex cell-wall pectin methylesterase activity (PME) was similar in ‘Chuan’ and ‘Liuku2’ in the absence of Al, but Al treatment resulted in increased PME activity in ‘Liuku2’ compared with ‘Chuan’. Immunolocalization of pectins also showed that the two cultivars had similar amounts of either low-methyl-ester pectins or high-methyl-ester pectins in the absence of Al, but Al treatment resulted in a more significant increase of low-methyl-ester pectins and decrease of high-methyl-ester pectins in ‘Liuku2’.

Conclusions

Cell-wall pectin content may contribute, at least in part, to differential Al resistance among tatary buckwheat cultivars.  相似文献   

9.
Aluminum resistance of cowpea as affected by phosphorus-deficiency stress   总被引:2,自引:0,他引:2  
Plants growing in acid soils suffer both phosphorus (P) deficiency and aluminum (Al) toxicity stresses. Selection of genotypes for adaptation to either P deficiency or Al toxicity has sometimes been unsuccessful because these two soil factors often interact. Two experiments were conducted to evaluate eight cowpea genotypes for Al resistance and to study the combined effect of P deficiency and Al toxicity stress on growth, P uptake, and organic acid anion exudation of two genotypes of contrasting Al resistance selected from the first experiment. Relative root inhibition by 30 μM Al ranged from 14% to 60% and differed significantly among the genotypes. Al significantly induced callose formation, particularly in Al-sensitive genotypes. P accumulation was significantly reduced (28% and 95%) by Al application for both the Al-resistant and the Al-sensitive genotypes. Al supply significantly enhanced malate release of root apices of both genotypes. However, the exudation rate was significantly higher in the Al-resistant genotype. P deprivation induced an enhanced malate exudation in the presence of Al only in the Al-resistant genotype IT89KD-391. Citrate exudation rate of the root apices was lower than malate exudation by a factor of about 10, and was primarily enhanced by P deficiency in both genotypes. Al treatment further enhanced citrate exudation in P-sufficient, but not in P-deficient plants. The level of citrate exudation was consistently higher in the Al-resistant genotype IT89KD-391 particularly in presence of Al.It is concluded that the Al-resistant genotype is better adapted to acid Al-toxic and P-deficient soils than the Al-sensitive genotype since both malate and citrate exudation were more enhanced by combined Al and P-deficiency stresses.  相似文献   

10.
Tamás  Ladislav  Huttová  Jana  Mistrík  Igor 《Plant and Soil》2003,250(2):193-200
The quantitative changes in peroxidase activity and composition of anionic and cationic isoperoxidases were investigated in roots of two barley cultivars differing in Al resistance. Root growth of Al-resistant cv. Bavaria was in lesser extent reduced by Al treatment (23% after 24 h Al-treatment), whereas 40% reduction of the root growth was observed in Al-sensitive cv. Alfor. The strong root growth inhibition in Al-sensitive cv. Alfor correlated with a 6-fold enhancement of peroxidase activity by Al treatment. Al-induced enhancement of peroxidase activity was found also in roots of Al-resistant cv. Bavaria, but this increase was only half of the Al-sensitive cv. Alfor. Comparison of peroxidase isoenzyme composition of Al-treated and non-treated roots revealed that activity of at least five anionic and four cationic isoperoxidases was stimulated by Al treatment. Three of anionic isoperoxidases (aPOD2-4) were selectively induced only in the Al-sensitive cv. Alfor. A possible involvement of peroxidases in root-growth inhibition is discussed.  相似文献   

11.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

12.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

13.
Isolation and characterization of a rice mutant hypersensitive to Al   总被引:4,自引:0,他引:4  
Rice (Oryza sativa L.) is a highly Al-resistant species among small grain crops, but the mechanism responsible for the high Al resistance has not been elucidated. In this study, rice mutants sensitive to Al were isolated from M(3) lines derived from an Al-resistant cultivar, Koshihikari, irradiated with gamma-rays. Relative root elongation was used as a parameter for evaluating Al resistance. After initial screening plus two rounds of confirmatory testing, a mutant (als1) was isolated from a total of 560 lines. This mutant showed a phenotype similar to the wild-type plant in the absence of Al. However, in the presence of 10 microM Al, root elongation was inhibited 70% in the mutant, but only 8% in the wild-type plant. The mutant also showed poorer root growth in acid soil. The Al content of root apices (0-1 cm) was much lower in the wild-type plant. The sensitivity to other metals including Cd and La did not differ between the mutant and the wild-type plants. A small amount of citrate was secreted from the roots of the mutant in response to Al stress, but there was no difference from that secreted by the wild-type plant. Genetic analysis of F(2) populations between als1 and wild-type plants showed that the Al-resistant seedlings and Al-sensitive seedlings segregated at a 3 : 1 ratio, indicating that the high sensitivity to Al in als1 is controlled by a single recessive gene. The gene was mapped to the long arm of chromosome 6, flanked by InDel markers MaOs0619 and MaOs0615.  相似文献   

14.
Oxalic acid secretion from roots is considered to be an important mechanism for aluminum (Al) resistance in buckwheat (Fygopyrum esculentum Moench). Nonetheless, only a single Al-resistant buckwheat cultivar was used to investigate the significance of oxalic acid in detoxifying Al. In this study, we investigated two buckwheat cultivars, Jiangxi (Al resistant) and Shanxi (Al sensitive), which showed significant variation in their resistance to Al stress. In the presence of 0 to 100 microM Al, the inhibition of root elongation was greater in Shanxi than that in Jiangxi, and the Al content of root apices (0-10 mm) was much lower in Jiangxi. However, the dependence of oxalic acid secretion on external Al concentration and the time course for secretion were similar in both cultivars. Furthermore, the variation in Al-induced oxalic acid efflux along the root was similar, showing a 10-fold greater efflux from the apical 0- to 5-mm region than from the 5- to 10-mm region. These results suggest that both Shanxi and Jiangxi possess an equal capacity for Al-dependent oxalic acid secretion. Another two potential Al resistance mechanisms, i.e. Al-induced alkalinization of rhizosphere pH and root inorganic phosphate release, were also not involved in their differential Al resistance. However, after longer treatments in Al (10 d), the concentrations of phosphorus and Al in the roots of the Al-resistant cultivar Jiangxi were significantly higher than those in Shanxi. Furthermore, more Al was localized in the cell walls of the resistant cultivar. All these results suggest that while Al-dependent oxalic acid secretion might contribute to the overall high resistance to Al stress of buckwheat, this response cannot explain the variation in tolerance between these two cultivars. We present evidence suggesting the greater Al resistance in buckwheat is further related to the immobilization and detoxification of Al by phosphorus in the root tissues.  相似文献   

15.
The secretion of organic acid anions from roots has been identified as a mechanism of resistance to Al. However, the process leading to the secretion of organic acid anions is poorly understood. The effect of Al on organic acid metabolism was investigated in two lines of triticale (xTriticosecale Wittmark) differing in Al-induced secretion of malate and citrate and in Al resistance. The site of Al-induced secretion of citrate and malate from a resistant line was localized to the root apices (terminal 5 mm). The levels of citrate (root apices and mature root segments) and malate (mature segments only) in roots increased during exposure to Al, but similar changes were observed in both triticale genotypes. The in vitro activities of four enzymes involved in malate and citrate metabolism (citrate synthase, phosphoenolpyruvate carboxylase, malate dehydrogenase, and NADP-isocitrate dehydrogenase) were similar for sensitive and resistant lines in both root apices and mature root segments. The response of these enzymes to pH did not differ between tolerant and sensitive lines or in the presence and absence of Al. Moreover, cytoplasmic and vacuolar pH were not affected by exposure to Al in either line. Together, these results indicate that the Al-dependent efflux of organic acid anions from the roots of triticale is not regulated by their internal levels in the roots or by the capacity of the root cells to synthesize malate and citrate.  相似文献   

16.
Basu U  Basu A  Taylor GJ 《Plant physiology》1994,106(1):151-158
Cultivars of Triticum aestivum differing in resistance to Al were grown under aseptic conditions in the presence and absence of Al and polypeptides present in root exudates were collected, concentrated, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon exposure to 100 and 200 [mu]M Al, root elongation in Al-sensitive cultivars was reduced by 30 and 65%, respectively, whereas root elongation in resistant cultivars was reduced by only 15 and 30%. Accumulation of polypeptides in the growth medium increased with time for 96 to 120 h, with little additional accumulation thereafter. This pattern of exudation was virtually unaffected by exposure to 100 [mu]M Al in the Al-resistant cultivars Atlas 66 and Maringa, whereas total accumulation was reduced in sensitive cultivars. Changes in exudation were consistent with alterations in root elongation. Al-induced or Al-enhanced polypeptide bands were detected in Atlas 66 and Maringa after 72 h of exposure to Al. Increased accumulation of 12-, 22-, and 33-kD bands was observed at 75 [mu]M Al in Atlas 66 and 12-, 23-, and 43.5-kD bands started to appear at 50 [mu]M Al in Maringa. In the Al-sensitive cultivars Roblin and Katepwa, no significant effect on polypeptide profiles was observed at values up to 100 [mu]M Al. When root exudates were separated by ultrafiltration and the Al content was measured in both high molecular mass (HMM; >10 kD) and ultrafiltrate (<10 kD) fractions, approximately 2 times more Al was detected in HMM fractions from Al-resistant cultivars than from Al-sensitive cultivars. Dialysis of HMM fractions against water did not release this bound Al;digestion with protease released between 62 and 73% of total Al, with twice as much released from exudates of Al-resistant than of Al-sensitive cultivars. When plants were grown in the presence of 0 to 200 [mu]M Al, saturation of the Al-binding capacity of HMM exudates occurred at 50 [mu]M Al in Al-sensitive cultivars. Saturation was not achieved in resistant cultivars. Differences in exudation of total polypeptides in response to Al stress, enhanced accumulation of specific polypeptides, and the greater association of Al with HMM fractions from Al-resistant cultivars suggest that root exudate polypeptides may play a role in plant response to Al.  相似文献   

17.
Although it is well known that aluminum (Al) resistance in wheat (Triticum aestivum) is multigenic, physiological evidence for multiple mechanisms of Al resistance has not yet been documented. The role of root apical phosphate and malate exudation in Al resistance was investigated in two wheat cultivars (Al-resistant Atlas and Al-sensitive Scout) and two near-isogenic lines (Al-resistant ET3 and Al-sensitive ES3). In Atlas Al resistance is multigenic, whereas in ET3 resistance is conditioned by the single Alt1 locus. Based on root- growth experiments, Atlas was found to be 3-fold more resistant in 20 [mu]M Al than ET3. Root-exudation experiments were conducted under sterile conditions; a large malate efflux localized to the root apex was observed only in Atlas and in ET3 and only in the presence of Al (5 and 20 [mu]M). Furthermore, the more Al-resistant Atlas exhibited a constitutive phosphate release localized to the root apex. As predicted from the formation constants for the Al-malate and Al-phosphate complexes, the addition of either ligand to the root bathing solution alleviated Al inhibition of root growth in Al-sensitive Scout. These results provide physiological evidence that Al resistance in Atlas is conditioned by at least two genes. In addition to the alt locus that controls Al-induced malate release from the root apex, other genetic loci appear to control constitutive phosphate release from the apex. We suggest that both exudation processes act in concert to enhance Al exclusion and Al resistance in Atlas.  相似文献   

18.
Short-term Al treatment (90 microM Al at pH 4.5 for 1 h) of the distal transition zone (DTZ; 1-2 mm from the root tip), which does not contribute significantly to root elongation, inhibited root elongation in the main elongation zone (EZ; 2.5-5 mm from the root tip) to the same extent as treatment of the entire maize (Zea mays) root apex. Application of Al to the EZ had no effect on root elongation. Higher genotypical resistance to Al applied to the entire root apex, and specifically to the DTZ, was expressed by less inhibition of root elongation, Al accumulation, and Al-induced callose formation, primarily in the DTZ. A characteristic pH profile along the surface of the root apex with a maximum of pH 5.3 in the DTZ was demonstrated. Al application induced a substantial flattening of the pH profile moreso in the Al-sensitive than in the Al-resistant cultivar. Application of indole-3-acetic acid to the EZ but not to the meristematic zone significantly alleviated the inhibition of root elongation induced by the application of Al to the DTZ. Basipetal transport of exogenously applied [(3)H]indole-3-acetic acid to the meristematic zone was significantly inhibited by Al application to the DTZ in the Al-sensitive maize cv Lixis. Our results provide evidence that the primary mechanisms of genotypical differences in Al resistance are located within the DTZ, and suggest a signaling pathway in the root apex mediating the Al signal between the DTZ and the EZ through basipetal auxin transport.  相似文献   

19.
20.
Aluminium (Al) toxicity or phosphorus (P) deficiency can induce exudation of organic acids from the roots of some plants, which is believed to be a tolerance mechanism against Al toxicity or P deficiency. In the present study, the effect of P deficiency on Al-induced citrate exudation was investigated in three soybean varieties differing in low-P tolerance. P starvation alone failed to induce secretion of organic acids from all three soybean varieties. However, P deficiency altered Al-induced citrate exudation over time, showing a complex interaction. Short × term P starvation (4 days) produced up to 50% increase in Al-induced citrate secretion, while longer-term (10 days) starvation reduced Al-induced citrate secretion to trace amounts. However, after a further 1 day in complete nutrient solution for recovery, Al-induced citrate exudation from the recovered roots was approximately 6 times higher than that from the continuously P-starved plants, but still approximately 3.6 times lower than that from the P-sufficient control. With increasing P or Al supply, Al-induced citrate exudation increased, while Al accumulation in soybean roots decreased in parallel with the decrease of P supply. The photosynthetic rate, stomatal conductance and transpiration were decreased by P deficiency, whereas the intracellular CO2 concentration was increased. These findings indicate that P nutrition has a significant effect on Al-induced citrate exudation and Al accumulation in soybean root apices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号