首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary Total endosperm proteins extracted from both several common wheat cultivars and some intervarietal substitution lines derived from them were fractionated according to their molecular weight in a high resolution one-dimensional gel electrophoresis. The four donor cultivars and the recipient one — Chinese Spring, possessed differentially migrating protein bands in the fractions of high molecular weight (HMW) glutenins and gliadins. Several of these bands were identified for the first time in this study. By utilizing intervarietal substitution lines the control of the HMW glutenins and gliadins by chromosomes of homoeologous group 1 was either reaffirmed or, for the new bands, established. Several HMW gliadin subunits showed a considerable variation in their staining intensity in the intervarietal substitution lines indicating that their expression was dependent on the genetic background.This paper is based on a portion of a dissertation to be submitted by G. Galili in partial fulfilment of the Ph.D. requirements of the Feinberg Graduate School, The Weizmann Institute of Science, RehovotThe Marshall and Edith Korshak Professor of Plant Cytogenetics  相似文献   

4.
5.
Deletion of phenylalanine at position 508 (DeltaF508) is the most common cystic fibrosis (CF)-associated mutation in the CF transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel. The consensus notion is that DeltaF508 imposes a temperature-sensitive folding defect and targets newly synthesized CFTR for degradation at endoplasmic reticulum (ER). A limited amount of CFTR activity, however, appears at the cell surface in the epithelia of homozygous DeltaF508 CFTR mice and patients, suggesting that the ER retention is not absolute in native tissues. To further elucidate the reasons behind the inability of DeltaF508 CFTR to accumulate at the plasma membrane, its stability was determined subsequent to escape from the ER, induced by reduced temperature and glycerol. Biochemical and functional measurements show that rescued DeltaF508 CFTR has a temperature-sensitive stability defect in post-ER compartments, including the cell surface. The more than 4-20-fold accelerated degradation rate between 37 and 40 degrees C is, most likely, due to decreased conformational stability of the rescued DeltaF508 CFTR, demonstrated by in situ protease susceptibility and SDS-resistant thermoaggregation assays. We propose that the decreased stability of the spontaneously or pharmacologically rescued mutant may contribute to its inability to accumulate at the cell surface. Thus, therapeutic efforts to correct the folding defect should be combined with stabilization of the native DeltaF508 CFTR.  相似文献   

6.
Low MW gliadin-like proteins from wheat endosperm   总被引:1,自引:0,他引:1  
A new group of hydrophobic endosperm proteins from Triticum aestivum has been characterized. It consists of 10 components with MWs in the range of 17 000–19 000, which have a similar range of electrophoretic mobilities at pH 3.2 as the classical gliadins. However, they have a higher proportion of sulphur amino acids and lower levels of glutamine and proline than the gliadins.  相似文献   

7.
Total protein extracts of wheat endosperm are widely used for the analysis of the highly abundant gliadins and glutenins. In this review, the most popular total endosperm extraction methods are compared for their effectiveness in proteome coverage. A drawback of total endosperm extracts is that the enormous dynamic range of protein abundance limits the detection, quantification, and identification of low abundance proteins. Protein fractionation is invaluable for improving proteome coverage, because it reduces sample complexity while enriching for specific classes of less abundant proteins. A wide array of techniques is available for isolating protein subpopulations. Sequential extraction is a method particularly suited for subfractionation of wheat endosperm proteins, because it takes advantage of the specific solubility properties of the different classes of endosperm proteins. This method effectively separates the highly abundant gliadins and glutenins from the much less abundant albumins and globulins. Subcellular fractionation of tissue homogenates is a classical technique for isolating membranes and organelles for functional analysis. This approach is suitable for defining the biochemical processes associated with amyloplasts, specialized organelles in the endosperm that function in the synthesis and storage of starch. Subproteome fractionation, when combined with 2-DE and protein identification, provides a powerful approach for defining endosperm protein composition and providing new insights into cellular functions.  相似文献   

8.
Wheat storage proteins are deposited in the vacuole of maturing endosperm cells by a novel pathway that is the result of protein body formation by the endoplasmic reticulum followed by autophagy into the central vacuole, bypassing the Golgi apparatus. This model predicts a reduced role of the Golgi in storage protein accumulation, which has been supported by electron microscopy observations. To study this issue further, wheat cDNAs encoding three distinct proteins of the endomembrane system were cloned and characterized. The proteins encoded were homologues (i) of the ER translocon component Sec61 alpha, (ii) the vacuolar sorting receptor BP-80 which is located in the Golgi and clathrin-coated prevacuole vesicles (CCV), and (iii) the Golgi COPI coatomer component COP alpha. During endosperm development, the levels of all three mRNAs were highest in young stages, before the onset of storage protein synthesis, and declined with seed maturation. However, the relative mRNA levels of BP-80/Sec61 alpha and the COP alpha/Sec61 alpha were lower during the onset of storage protein synthesis than at earlier stages of endosperm development. These results support previous studies, suggesting a reduced function of the Golgi apparatus in wheat storage protein transport and deposition.  相似文献   

9.
Linkage mapping of genes controlling endosperm storage proteins in wheat   总被引:15,自引:0,他引:15  
Summary A translocation mapping procedure was used to map gene-centromere distances for the genes controlling endosperm proteins on the short arm of each of the chromosomes 1A, 1B and 1D in wheat. The genes controlling triplet proteins (tentatively designated Tri-1) were found to be closely linked to the centromere on chromosome arms 1AS and 1DS and loosely linked to the gliadin genes (Gli-1) on the same arms. The Gli-1 genes segregated independently or were very loosely linked to their respective centromeres. The Gli-B1-centromere map distance on 1BS was also estimated using conventional telocentric mapping and the result was similar to that obtained with the translocation mapping. A simple two-step one-dimensional electrophoretic procedure is described which allows the low-molecular-weight (LMW) glutenin subunits to be separated from the gliadin bands, thus facilitating the genetic analysis of these LMW subunits. No recombination was observed between the genes (designated Glu-3) controlling some major LMW glutenin subunits and those controlling gliadins on chromosome arms 1AS and 1DS. However, in a separate experiment, the genes controlling LMW glutenin subunits on 1BS (Glu-B3) showed a low frequency of recombination with the gliadin genes.Portion of the Ph.D. thesis submitted by the senior author  相似文献   

10.
Synthesis of proteins rich in lysine declines progressively with endosperm development and these proteins appear to be degraded preferentially at later stages. The proteolytic enzymes in extracts of endosperms at a late stage of development release considerably more lysine radioactivity from labelled endosperm proteins as compared with the enzymes in endosperms at an early stage.  相似文献   

11.
Relationships among low MW hydrophobic proteins from wheat endosperm   总被引:1,自引:0,他引:1  
Low MW proteins extractable with chloroform-methanol mixtures from wheat endosperm have been purified from different Triticum species and partially characterized. Their amino acid composition and MWs are consistent with previous genetic evidence concerning relationships among these proteins: proteins CM1 and CM2 are homoeologous (ancestral homologues); proteins CM3 and CM3′ are allelic variants; proteins 16 and 17 are homoeologous.  相似文献   

12.
The membrane proteins of glyoxysomes and ER from germinating castor bean endosperm were analyzed by a two-dimensional system: the proteins were first separated by reversed-phase high performance liquid chromatography and subsequently by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several proteins were common to glyoxysomal and ER membranes, including those at 93, 88, 75, 72, 57, 46, and 32 kDa. Each of these common components was resistant to sodium carbonate extraction and eluted from the reversed phase column at the same acetonitrile concentration. Two proteins, 23 and 33 kDa, were unique to the ER while 30 and 24 kDa characterized the glyoxysomal membranes.  相似文献   

13.
14.
Summary A new methodology to determine the chromosomal location and allelic differences of endosperm proteins in common wheat cultivars by analysis of monosomic intervarietal hybrids is reported. Endosperm proteins from the common wheats Chinese Spring, Capelle Desprez, Holdfast and Pane 247 are studied using monosomic F1 for the chromosomes of homoeologous groups 1 and 6. The proteins were fractionated by two electrophoretical techniques, SDS- and A-PAGE. The use of monosomic offers a remarkable advantage over the utilization of intervarietal substitution lines, because it permits a quicker characterization and earlier evaluation of basic material to be used in breeding programmes.  相似文献   

15.
Summary The gliadin components from four bread wheat cultivars: Chinese Spring, Capelle Desprez, Holdfast and Pane-247 and their monosomic F1s for the chromosomes of homoeologous groups 1 and 6 have been analyzed by two-dimensional (2-pH) polyacrylamide gel electrophoresis. Chromosomal location of gliadin genes and the allelic differences were well established by analyzing the different F1 monosomic hybrids, electrophoretical patterns and differences in relative staining intensity. A new gliadin encoded by a gene located on chromosome 6B in Chinese Spring is described. The two-dimensional patterns of gliadin in the other three varieties and the chromosomal location of their genes are reported for the first time. Relationships between gliadins in the two-dimensional patterns and the traditional system for their nomenclature are discussed.  相似文献   

16.
Linda Bowden  J.M. Lord 《Planta》1977,134(3):267-272
Glyoxysomes isolated from the endosperm of castor bean (Ricinus communis L.) by sucrose density gradient centrifugation were fractionated into their matrix protein and membrane components. Antisera were raised in rabbits against both the matrix proteins and sodium dodecyl sulphate (SDS)-solubilized membrane proteins. SDS-polyacrylamide gel electrophoresis (PAGE) analysis established that such antisera precipitate all major polypeptide components present in their respective glyoxysomal mixedantigen preparations. Furthermore, when soluble constituents recovered from the microsomal vesicles or solubilized microsomal membranes were challenged with the appropriate glyoxysomal antiserum, serological determinants were again found to be present. Intact endosperm tissue was incubated with [35S]methionine and the kinetics of 35S-incorporation into protein recovered in immunoprecipitates when the glyoxysomal matrix fraction or the soluble fraction released from the microsomes were incubated with anti-glyoxysomal matrix serum were followed. [35S]antigens rapidly appeared in the microsomal fraction whereas a lag period preceded their appearance in glyoxysomes. Interupting such kinetic experiments by the addition of an excess of unlabelled methionine resulted in a rapid decrease in the microsomal content of [35S]antigens and a concomitant increase in glyoxysomal content.Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - ER endoplasmic reticulum  相似文献   

17.
J. Forde  B. J. Miflin 《Planta》1983,157(6):567-576
The prolamin storage proteins of the wheat endosperm contain a sub-class of high-molecular-weight (HMW) polypeptides which have been implicated in determining breadmaking quality. Membrane-bound polysomes isolated from developing wheat endosperms contain mRNA for these HMW components. Although unfractionated polyadenylated RNA derived from the polysomes did not direct the synthesis of these components in an in-vitro wheat-germ system, it did when incubated with a rabbit reticulocyte lysate system. Identification of the translation products as HMW prolamins was based on their large incorporation of [3H]leucine and [3H]glycine relative to [3H]lysine, their mobility on polyacrylamide-gel electrophoresis and the observation that the changes of mobility in response to change in wheat genotype were the same as those observed for the authentic protein. The mRNA was fractionated by electrophoresis and density-gradient centrifugation. The mRNA for the HMW prolamins was found to have a relative molecular mass of about 1.6·106.Abbreviations HMW high molecular weight - PAGE polyacrylamide-gel electrophoresis - poly(A)+RNA polyadenylated RNA - SDS sodium dodecyl sulphate  相似文献   

18.
Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.  相似文献   

19.
Three proteases with caseinolytic activity have been isolated from the developing wheat endosperm. Two have been purified. The activity of protease A, the one that appears early in endosperm development, is inhibited by - SH inhibitors. Protease C, the one that appears late in endosperm development, is not affected. Protease A cleaves polyaspartic acid and polyglutamic acid but not polylysine. Protease C, on the other hand, cleaves polylysine but not polyaspartic acid and polyglutamic acid. Protease C degrades lysine-rich proteins isolated from wheat endosperm more efficiently than protease A.  相似文献   

20.
Genes active in developing wheat endosperm   总被引:3,自引:0,他引:3  
This paper describes the construction and characterisation of a cDNA library from wheat endosperm tissue during the early stages of grain filling. Developing wheat endosperm tissue was characterised with respect to standard measures including dry weight, cytological appearance and timing of expression of major sources of mRNA such as the seed storage protein genes. In addition, the full complement of proteins present at mid-endosperm development was examined using 2D-electrophoretic techniques. Based on this characterisation, endosperm from the developing grain 8–12 days post-anthesis was chosen for isolating mRNA and preparing cDNA. At this stage in development the mRNA population is not yet dominated by the accumulation of mRNA from seed storage protein genes. A cDNA library, not normalised, containing a high percentage of full length cDNA clones was constructed and 4,319 clones sequenced ("single-pass"). Partitioning of the cDNA sequences into gene families and singletons provided the basis for quantifying the accumulation of sequence classes relative to the total number of sequences determined. The accumulation of gene families/singletons was not linear. However, mathematical modeling of the data suggested that the maximum number of different genes expressed is within the range of 4,500–8,000 (detailed in the Appendix). If an average is taken of these extremes, approximately 27% of the gene products were visible as proteins in the 2D-electrophoretic analysis. Analysis of a functional class of genes relevant to wheat grain end-use, namely the glutenin/gliadin seed storage protein class of genes, revealed a new category of gene characterised by a distinctive N-terminal domain and a reduced central repetitive domain. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号