首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Osteoarthritis (OA) is a disease of articular cartilage, with aging as the main risk factor. In OA, changes in chondrocytes lead to the autolytic destruction of cartilage. Transforming growth factor-β has recently been demonstrated to signal not only via activin receptor-like kinase 5 (ALK5)-induced Smad2/3 phosphorylation, but also via ALK1-induced Smad1/5/8 phosphorylation in articular cartilage. In aging cartilage and experimental OA, the ratio ALK1/ALK5 has been found to be increased, and the expression of ALK1 is correlated with matrix metalloproteinase-13 expression. The age-dependent shift towards Smad1/5/8 signalling might trigger the differentiation of articular chondrocytes with an autolytic phenotype.  相似文献   

4.
Purinergic Signalling - Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the...  相似文献   

5.
Lipids and lipid-derived metabolites are increasingly recognised as bona fide signalling molecules that regulate many cellular processes. These include the well-established InsP3, diacylglycerol (DAG), PIP2, PIP3 and arachidonic acid (AA), as well as other poly-unsaturated fatty acids (PUFAs), lysophospholipids, sphingolipids, endocannabinoids and endovanilloids. They regulate a plethora of molecules that are involved in Ca2+ signalling, including various ion channels, pumps and transporters, thereby triggering, modulating and fine-tuning Ca2+ signals. Although appreciated individually, it seems timely to highlight the overall impact of lipids as signalling molecules and their role in Ca2+ signalling, and this is the aim of this special issue of Cell Calcium.  相似文献   

6.
7.
TGFβ signalling in the development of ovarian function   总被引:1,自引:0,他引:1  
Ovarian development begins back in the embryo with the formation of primordial germ cells and their subsequent migration and colonisation of the genital ridges. Once the ovary has been defined structurally, the primordial germ cells transform into oocytes and become housed in structures called follicles (in this case, primordial follicles), a procedure that, in most mammals, occurs either shortly before or during the first few days after birth. The growth and differentiation of follicles from the primordial population is termed folliculogenesis. Primordial follicles give rise to primary follicles that transform into preantral follicles, then antral follicles (secondary follicles) and, finally (preovulatory) Graafian follicles (tertiary follicles) in a co-ordinated series of transitions regulated by hormones and local intraovarian factors. Members of the transforming growth factor-β (TGFβ) superfamily have been shown to play important roles in this developmental process starting with the specification of primordial germ cells by the bone morphogenetic proteins through to the recruitment of primordial follicles by anti-Mullerian hormone and, potentially, growth and differentiation factor-9 (GDF9) and, finally, their transformation into preantral and antral follicles in response to activin and TGF-β. Developmental and mutant mouse models have been used to show the importance of this family of growth factors in establishing the first wave of folliculogenesis.The author thanks the NHMRC of Australia for funding (Regkey 241000).  相似文献   

8.
Xiao  Hui  Bartoszek  Krzysztof  Lio&#;  Pietro 《BMC bioinformatics》2018,19(15):439-18

Background

Inflammation is a core element of many different, systemic and chronic diseases that usually involve an important autoimmune component. The clinical phase of inflammatory diseases is often the culmination of a long series of pathologic events that started years before. The systemic characteristics and related mechanisms could be investigated through the multi–omic comparative analysis of many inflammatory diseases. Therefore, it is important to use molecular data to study the genesis of the diseases. Here we propose a new methodology to study the relationships between inflammatory diseases and signalling molecules whose dysregulation at molecular levels could lead to systemic pathological events observed in inflammatory diseases.

Results

We first perform an exploratory analysis of gene expression data of a number of diseases that involve a strong inflammatory component. The comparison of gene expression between disease and healthy samples reveals the importance of members of gene families coding for signalling factors. Next, we focus on interested signalling gene families and a subset of inflammation related diseases with multi–omic features including both gene expression and DNA methylation. We introduce a phylogenetic–based multi–omic method to study the relationships between multi–omic features of inflammation related diseases by integrating gene expression, DNA methylation through sequence based phylogeny of the signalling gene families. The models of adaptations between gene expression and DNA methylation can be inferred from pre–estimated evolutionary relationship of a gene family. Members of the gene family whose expression or methylation levels significantly deviate from the model are considered as the potential disease associated genes.

Conclusions

Applying the methodology to four gene families (the chemokine receptor family, the TNF receptor family, the TGF– β gene family, the IL–17 gene family) in nine inflammation related diseases, we identify disease associated genes which exhibit significant dysregulation in gene expression or DNA methylation in the inflammation related diseases, which provides clues for functional associations between the diseases.
  相似文献   

9.
G protein-coupled receptors (GPCRs) can engage multiple pathways to activate ERK1/2 via both G proteins and/or ßarrestin. Receptor recruitment of ßarrestin is also important for GPCR desensitization, internalization and resensitization. Modulation of the receptor/ßarrestin interaction through modification of either component would presumably alter the output generated by receptor activation. Here we examined how ßarrestins regulate bradykinin (BK) B2 receptor (B2R) signalling and desensitization by either truncating ßarrestin1 or ßarrestin2 or by alanine substitution of a serine/threonine cluster in the C-terminal tail of B2R (B2R-4A), conditions which all affect the avidity of the B2R/ßarrestin complex. We first demonstrate that BK-mediated ERK1/2 activation is biphasic containing an early peak (between 2-5 min) followed by sustained activation for at least 60 min. The early but not the sustained phase was predictably affected by inhibition of either Gαq/11 or Gαi/o, whereas loss of ßarrestin2 but not ßarrestin1 resulted in diminished prolonged ERK1/2 activation. ßarrestin2's role was further examined using a truncation mutant with augmented avidity for the agonist-occupied receptor, revealing an increase in both immediate and extended ERK1/2 signalling. We also show that ERK1/2 is recruited to the B2R/ßarrestin complex on endosomes as well as the plasma membrane. Moreover, we investigated ßarrestin's role using the B2R-4A, which is deficient in ßarrestin binding and does not internalize. We show that ERK1/2 signalling downstream of the receptor is entirely G protein-dependent and receptor-mediated intracellular calcium mobilization studies revealed a lack of desensitization. Functionally, the lack of desensitization resulted in increased cell growth and migration compared to the wild-type receptor, which was sensitive to MEK inhibition. These results highlight ßarrestin's crucial role in the maintenance of proper B2R signalling.  相似文献   

10.
11.
The G protein signalling pathway is one of the most highly conserved mechanisms that enables cells to sense and respond to changes in their environment. Essential components of this are cell surface G protein-coupled receptors (GPCRs) that perceive extracellular ligands, and heterotrimeric G proteins (G proteins) that transduce information from activated GPCRs to down-stream effectors such as enzymes or ion channels. It is now clear from a range of biochemical and molecular studies that some potential G protein signalling components exist in plants. The best examples of these are the seven transmembrane receptor homologue GCR1 and the Gα (GPA1) and Gβ (Gβ1) subunit homologues of heterotrimeric G proteins. G protein agonists and antagonists are known to influence a variety of signalling events in plants and have been used to implicate G proteins in a range of signalling pathways that include the plant hormones gibberellin and auxin. Furthermore, antisense suppression of GCR1 expression in Arabidopsis leads to a phenotype that supports a role for this receptor in cytokinin signalling. This review considers the current evidence for and against functional G protein signalling pathways in higher plants and questions whether or not these might be involved in the action of certain plant hormones.  相似文献   

12.
13.
The study addressed to understand whether or not lipoproteins at low concentrations could modulate Receptor-C dependent platelet signalling revealed that LDL, like exogneous cholesterol, had the capacity to initiate PLD-dependent platelet signalling in a dose dependent fashion and this effect was inhibited in presence of HDL; cAMP; DTT; Zn++ and butanol whereas cGMP had no effect upon this PLD-dependent signalling. Further Receptor C from platelet in the purified-form displayed LDL-or cholesterol-dependent autophosphorylation at the tyrosine residues and this Receptor-C tyrosine kinase (Receptor-Ck) activity contributed to the observed LDL-or cholesterol-dependent PLD activity in human platelets. Based upon these results coupled with earlier results, an attempt was made to define the lipoprotein-dependent platelet signalling pathway.  相似文献   

14.
Gehart H  Kumpf S  Ittner A  Ricci R 《EMBO reports》2010,11(11):834-840
Mitogen-activated protein kinase (MAPK) signalling occurs in response to almost any change in the extracellular or intracellular milieu that affects the metabolism of the cell, organ or the entire organism. MAPK-dependent signal transduction is required for physiological metabolic adaptation, but inappropriate MAPK signalling contributes to the development of several interdependent pathological traits, collectively known as metabolic syndrome. Metabolic syndrome leads to life-threatening clinical consequences, such as type 2 diabetes. This Review provides an overview of the MAPK-signalling mechanisms that underly basic cellular metabolism, discussing their link to disease.  相似文献   

15.
16.
17.
C Jacquemin 《Biochimie》1991,73(1):37-40
During the last 10 years, attention has been focused on the stimulation by various agonists of the hydrolysis of phosphatidylinositol bis-phosphate into the second messengers inositol tris-phosphate and diacylglycerol. Two other aspects of the metabolism of phosphoinositides were therefore not paid sufficient attention. The first one was the release by insulin of a glycosyl inositol-phosphate from a glycosyl phosphatidylinositol, the hydrosoluble product being able to reproduce some of the hormone effects; the second was the discovery that several membrane proteins were anchored via a glycosyl phosphatidylinositol. For over 20 years, we have been interested in the effect of thyreostimulin (TSH) on the turnover of phosphatidylinositol in pig thyrocyte. As this effect did not seem to result from the hydrolysis of phosphatidylinositol bis-phosphate we explored another possibility, the synthesis of glycosyl inositol-phosphate. We have shown that, in cultured pig thyrocytes, TSH stimulates the release of the polar head of a glycosyl phosphatidylinositol. This soluble glycosyl inositol-phosphate which acts as insulin on adipocyte, modulates the cAMP accumulation and iodine metabolism in thyrocytes and could be held responsible for the cAMP independent effects of TSH. However, we do not yet know if there is a link between the glycosyl phosphatidylinositol sensitive to TSH and the anchor membrane protein. To date, the amount of 2 of these proteins: NAD glyco-hydrolase in thyroid cell membranes and heparan sulfate proteoglycan have been shown to be increased by TSH treatment of thyroid cells.  相似文献   

18.
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms.  相似文献   

19.
More than a decade ago, it was postulated that components derived from trematode parasites block receptors on the defence cells of their snail intermediate hosts, thus preventing host-cell activation and parasite elimination. This phenomenon has still not been investigated extensively. However, recent work concerning the molecular regulation of the molluscan defence response provides a new framework for studies that focus on an extension of this original concept - subversion of host cell signalling by trematode parasites. The hypothesis is that, to facilitate survival and replication in their intermediate hosts, trematode parasites down regulate host defence responses by interfering with key signal-transduction pathways in snail defence cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号