首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have recently focused on the anticarcinogenic, antimutagenic, or chemopreventive activities of the main pungent component of red pepper, capsaicin (N-vanillyl-8-methyl-1-nonenamide). We have previously shown that, in the androgen-independent prostate cancer PC-3 cells, capsaicin inhibits cell growth and induces apoptosis through reactive oxygen species (ROS) generation [Apoptosis 11 (2006) 89–99]. In the present study, we investigated the signaling pathways involved in the antiproliferative effect of capsaicin. Here, we report that capsaicin apoptotic effect was mediated by ceramide generation which occurred by sphingomyelin hydrolysis. Using siRNA, we demonstrated that N-SMase expression is required for the effect of capsaicin on prostate cell viability. We then investigated the role of MAP kinase cascades, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in the antiproliferative effect of capsaicin, and we confirmed that capsaicin could activate ERK and JNK but not p38 MAPK. Pharmacological inhibition of JNK kinase, as well as inhibition of ROS by the reducing agent N-acetylcysteine, prevented ceramide accumulation and capsaicin-induced cell death. However, inhibition of ceramide accumulation by the SMase inhibitor D609 did not modify JNK activation. These data reveal JNK as an upstream regulator of ceramide production. Capsaicin-promoted activation of ERK was prevented with all the inhibitors tested. We conclude that capsaicin induces apoptosis in PC-3 cells via ROS generation, JNK activation, ceramide accumulation, and second, ERK activation.  相似文献   

2.
In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague–Dawley rats fed with a high‐fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8 wk. After HFD feeding, capsaicin‐treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2‐DE for detection of HFD‐associated markers. Proteomic analysis using 2‐DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD‐fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP‐activated protein kinase (AMPIC) CP3 and acetyl‐CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK‐ACC‐malonyl‐CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet‐induced alterations of protein expression that are essential for energy expenditure in rat muscle.  相似文献   

3.
Pancreatic cancer is one of the most common invasive malignancies and the fourth leading cause of cancer related mortality in U.S., thus developing new strategies to control pancreatic cancer is an important mission. We investigated the mechanism of capsaicin, the major pungent ingredient of red-chili pepper, in inducing apoptosis in pancreatic cancer cells. Treatment of AsPC-1 and BxPC-3 cells with capsaicin resulted in a dose-dependent inhibition of cell-viability and induction of apoptosis which was associated with the generation of ROS and persistent disruption of mitochondrial membrane potential. These effects were significantly blocked when the cells were pretreated with a general antioxidant N-acetyl cysteine (NAC). Exposure of AsPC-1 and BxPC-3 cells to capsaicin was also associated with increased expression of Bax, down-regulation of bcl-2, survivin and significant release of cytochrome c and AIF in the cytosol. On the contrary, above-mentioned effects were not observed in the normal acinar cells in response to capsaicin-treatment. Capsaicin-treatment resulted in the activation of JNK and JNK inhibitor SP600125 afforded protection against capsaicin-induced apoptosis. Furthermore, capsaicin when given orally markedly suppressed the growth of AsPC-1 pancreatic tumor xenografts in athymic nude mice, without side effects. Tumors from capsaicin treated mice demonstrated increased apoptosis, which was related to the activation of JNK and increased cytosolic protein expression of Bax, cytochrome c, AIF and cleaved caspase-3, as compared with controls. Taken together, these results show that capsaicin is an effective inhibitor of in vitro and in vivo growth of pancreatic cancer cells. These findings provide the rationale for further clinical investigation of capsaicin against pancreatic cancer. Ruifen Zhang and Ian Humphreys contributed equally to this work.  相似文献   

4.
An animal study was carried out to examine the beneficial influence of the known hypocholesterolemic spice principle-capsaicin on the susceptibility of low-density lipoprotein to oxidation in normal and hypercholesterolemic condition. In rats rendered hypercholeterolemic by maintaining them on a cholesterol-enriched diet for eight weeks, inclusion of capsaicin (0.015%) in the diet, produced significant hypocholesterolemic effect. Oxidation of low-density lipoprotein was induced either by copper ion in vitro after its isolation, or by ferrous ion in vivo in experimental rats under either normal or hypercholesterolemic situation and the beneficial effect of dietary capsaicin on the same was evaluated. LDL oxidation was measured by the thiobarbituric acid reactive substances (TBARS) formed and relative electrophoretic mobility of oxidized LDL. Dietary capsaicin was found to be protective to the LDL oxidation in vitro in the case of normal rats as indicated by reduction in TBARS by more than 40%. In the case of LDL isolated from hypercholesterolemic rats the extent of copper induced LDL oxidation was significantly lower than that of LDL isolated from normal rats. Dietary capsaicin did not make any difference in the extent of LDL oxidation in vitro in hypercholesterolemic rats. Ferrous ion induced in vivo oxidation of LDL was 71% lower in capsaicin fed normal rats. In high cholesterol feeding, Fe-induced in vivo oxidation of LDL was 73% lower, while the same was still marginally lower in capsaicin fed hypercholesterolemic rats. Hepatic lipid peroxidation was significantly decreased by dietary capsaicin in normal rats. While a significantly decreased level of lipid peroxidation was observed in hypercholesterolemic rats compared to normal rats, the same was not significantly altered by dietary capsaicin. Results suggest that dietary spice principle capsaicin is protective to LDL oxidation both in vivo and in vitro under normal situation, while in hypercholesterolemic situation where the extent of LDL oxidation is already lowered, capsaicin does not offer any further reduction.  相似文献   

5.
To discover new anticancer agents, two series of thiosemicarboxamide derivatives were synthesized and evaluated for their antiproliferative activity against human cancer cells in vitro. Most target compounds (especially 3f , 3g , and 3h ) exhibit potent antiproliferative activity against HeLa cells. Importantly, compound 3h , bearing a 4-methylphenyl substituent at N position of thiourea moiety, has significant and broad-spectrum inhibitory activities against cancer cells (HepG2, HeLa, MDA-MB231, A875, and H460 cells) with low IC50 values (<5.0 μM) and shows low toxicity to normal LO2 and MRC-5 cells. Further studies show that compound 3h exerts high inhibitory activity in cancer cells by inducing the G2/M-phase arrest of cancer cells. Collectively, this study presents compound 3h as a new entity for the development of cell cycle arrest inducers for the treatment of cancer.  相似文献   

6.
Twenty-two quaternary 8-dichloromethylprotoberberine alkaloids were synthesized from unmodified quaternary protoberberine alkaloids (QPAs) to improve their physical and chemical properties and to obtain selectively anticancer derivatives. The synthesized derivatives showed more appropriate octanol/water partition coefficients by up to values 3–4 compared to unmodified QPA substrates. In addition, these compounds exhibited significant antiproliferative activity against colorectal cancer cells and lower toxicity on normal cells, resulting in more significant selectivity indices than unmodified QPA compounds in vitro. The IC50 values of antiproliferative activity of quaternary 8-dichloromethyl-pseudoberberine 4-chlorobenzenesulfonate and quaternary 8-dichloromethyl-pseudopalmatine methanesulfonate against colorectal cancer cells are 0.31 μM and 0.41 μM, respectively, significantly stronger than those of other compounds and positive control 5-fluorouracil. These findings suggest that 8-dichloromethylation can be used as one of the modification strategies to guide the structural modification and subsequent investigation of anticancer drugs for CRC based on QPAs.  相似文献   

7.
It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones ( AQQ1-5 ) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones ( AQQ2-5 ) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3 , in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ ( AAQ2 ) have been studied.  相似文献   

8.
Capsaicin (CAP), the prototypical TRPV1 agonist, is the major active component in chili peppers with health-promoting benefits. However, its use is limited by the low bioavailability and irritating quality. In this study, for improving the activity of CAP and alleviating its irritating effects, a series of H2S-releasing CAPs were designed and synthesized by combining capsaicin and dihydro capsaicin with various hydrogen sulfide donors. The resulting compounds were evaluated their TRPV1 agonist activity, analgesic activity, anticancer activities, H2S-releasing ability, and gastric mucosa irritation. Biological evaluation indicated that the most active compound B9, containing 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione moiety as H2S donor, had better analgesic activity and displayed more potent cytotoxic effects on the test cell lines than the lead compound CAP. Furthermore, the preferred compound, B9 reduced rat gastric mucosa irritation caused by CAP. Notably, the improved properties of this derivative are associated with its H2S-releasing capability.  相似文献   

9.
Capsaicin, the pungent ingredient of hot chilli pepper, has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. Here, we investigated the role of the vanilloid capsaicin in the death regulation of the human cancer androgen-resistant cell line PC-3. Capsaicin inhibited the growth of PC-3 with an IC50 of 20 μM cells and induced cell apoptosis, as assessed by flow cytometry and nuclei staining with DAPI. Capsaicin induced apoptosis in prostate cells by a mechanism involving reactive oxygen species generation, dissipation of the mitochondrial inner transmembrane potential (ΔΨm) and activation of caspase 3. Capsaicin-induced apoptosis was not reduced by the antagonist capsazepine in a dose range from 0.1 μM to 20 μM, suggesting a receptor-independent mechanism. To study the in vivo effects of capsaicinoids, PC-3 cells were grown as xenografts in nude mice. Subcutaneous injection of either capsaicin or capsazepine (5 mg/kg body weight) in nude mice suppressed PC-3 tumor growth in all tumors investigated and induced apoptosis of tumor cells. Our data show a role for capsaicin against androgen-independent prostate cancer cells in vitro and in vivo and suggest that capsaicin is a promising anti-tumor agent in hormone-refractory prostate cancer, which shows resistance to many chemotherapeutic agents.  相似文献   

10.
The aim of this study was to investigate tactile sensitivity near the site of primary hyperalgesia evoked by capsaicin applied topically to the dorsolateral aspect of the hand. In the first experiment (N = 15), touch thresholds increased in the fifth finger ipsilateral to the topically applied capsaicin, but remained unchanged at greater distances from the site of capsaicin treatment. In a second experiment (N = 12), the effect of the capsaicin treatment on sensations evoked not only by light touch but also by warmth, heat-pain, and pressure-pain to a 2-mm diameter steel probe was investigated in the fifth finger. Again, tactile sensitivity was inhibited at the fifth finger, even though stimulation with a cotton bud evoked no discomfort; moreover, sensitivity to warmth and heat-pain were unimpaired. However, sensitivity to pressure-pain increased in the fifth finger after the capsaicin treatment, possibly due to activation of nociceptors sandwiched between the probe tip and bone that normally responded to sharp stimuli. These findings suggest that the central mechanisms that mediate secondary mechanical hyperalgesia suppress sensitivity to innocuous tactile sensations. This effect may contribute to tactile hypoesthesia in chronic pain conditions.  相似文献   

11.
The effect of capsaicin, main pungent ingredient of hot chilli peppers, in the gene expression profile of human prostate PC-3 cancer cells has been analyzed using a microarray approach. We identified 10 genes that were down-regulated and five genes that were induced upon capsaicin treatment. The data obtained from microarray analysis were then validated using quantitative real-time PCR assays and Western blot analysis. The most remarkable change was the up-regulation of GADD153/CHOP, an endoplasmic reticulum stress-regulated gene. Activation of GADD153/CHOP protein was corroborated by immunofluorescence and Western blot. We then tested the contribution of GADD153/CHOP to protection against capsaicin-induced cell death using RNA interference. Blockage of GADD153/CHOP expression by small interfering RNA, significantly reduced capsaicin-induced cell death in PC-3 cells. Taken together, these results suggested that capsaicin induces the antiproliferative effect through a mechanism facilitated by ER stress in prostate PC-3 cells.  相似文献   

12.
A series of functionalized naphthalene was synthesized and screened against human prostate cancer cell line (PC-3). The in vitro antiproliferative activity of the synthesized compounds was evaluated by monitoring their cytotoxic effects against PC-3 cells by using MTT assay. We observed that compound 5f resulted in more than 50% cell death at 14?µM. Treatment of PC-3 cells with 5f provides apoptosis by flow cytometry. Western blotting showed decreased expression of pro-caspase 8 and 9. Our study shows that cancer cell treated with 5f has higher concentration of reactive oxygen species as compare to untreated sample, which facilitate cancerous cell to enter apoptosis. Exact mechanism by which ROS is generated after 5f treatment is still under study. Molecular docking study further strengthens the results obtained from in vitro experiments. Compound 5f can be considered as a promising leads for anticancer agent against prostate cancer cells due to its potent cytotoxic activity and apoptotic effect.  相似文献   

13.
Capsaicin (8-methyl-N-vanillyl-6-nonenamide), a major pungent ingredient in a variety of red peppers of the genus Capsicum, is a type of vanilloid. It has been shown to induce apoptosis in many cell types. The effects of vanilloids on apoptosis induction are thought to be correlated with the length and degree of the unsaturation of the fatty acyl chains. In this study, we compared the effect of capsaicin and its docosahexaenoic acid (DHA, C22:6) analog (we named as dohevanil) on human breast cancer MCF-7 cells, which do not express caspase-3. Dohevanil, which was synthesized from DHA and vanillylamine, has longer and highly unsaturated fatty acyl chain than capsaicin. We showed that both vanilloids exhibit effects of growth inhibition and DNA fragmentation induction in MCF-7 cells. These effects of dohevanil were more potent than capsaicin. Because these effects were inhibited by z-VAD-fmk, a broad-spectrum caspase inhibitor, the vanilloids induced the apoptosis via caspase-dependent pathway not involving caspase-3. In conclusion, dohevanil has a more potent effect on apoptosis induction in MCF-7 cells than capsaicin.  相似文献   

14.

The importance of microbial natural compounds in drug research is increasing every year and they are used to prevent or treat a variety of diseases. Hypomyces chrysospermus is a cosmopolitan parasite of many Boletaceae members. Since not much work has been conducted to date, this study is undertaken to explore the anticancer effect, including the antiproliferative and antimetastatic activity of Hypomyces chrysospermus. The aim of this study is to determine the antiproliferative and antimetastatic activity of Hypomyces chrysospermus ethyl acetate extract, having antioxidant activity, against A549, Caco2, MCF-7 human cancer and CCD-19 Lu and CCD 841 CoN healthy human cell lines. Firstly, cytotoxic activity was determined by the WST-1 assay. After cell proliferations and anti-metastatic effects were investigated by a real-time cell analysis system (RTCA-DP) and IC50 concentrations were calculated for each cell line. In addition, the expression levels of Apaf-1, TNF and NF-kB mRNA in cancer cells were investigated with RealTime-PCR. The ethyl acetate extract of Hypomyces chrysospermus presented anticancer activities including antiproliferative and antimetastatic effects. Hypomyces chrysospermus as a source of biologically active metabolites can be used as an important resource in the development of new anticancer effective agents.

  相似文献   

15.
16.
The anti-cancer effect of amygdalin on human cancer cell lines   总被引:1,自引:0,他引:1  

Derived from rosaceous plant seed, amygdalin belongs to aromatic cyanogenic glycoside group, and its anticancer effects have been supported by mounting evidence. In this study, we objected to investigate amygdalin effect on two antiapoptotic genes (Survivin, XIAP) and two lncRNAs (GAS5, MALAT1) in human cancer cells (A549, MCF7, AGS). Employing RT-qPCR analysis, we compared the mRNA levels of the genes related to apoptosis in A549, MCF7, and AGS cancer cells between amygdalin-treated (24, 48 and 72 h) and un-treated groups. RNA was extracted from both cell groups and then cDNAs were synthesized. The changes in the gene expression levels were specified using ΔΔCt method. RT-qPCR analysis has revealed that the expression of Survivin, XIAP, GAS5 and MALAT1 in amygdala-treated cancer cells were significantly different, compared to the un-treated cells. However, these expressions were different depending on the treatment time. According to the results, amygdalin significantly inhibited the expression level of Survivin, and XIAP genes in treated via untreated group. Our findings suggest that amygdalin might have an anticancer effect due to the various gene expressions in A549, MCF7, and AGS human cancer cells, showing it’s potential as a natural therapeutic anticancer drug.

  相似文献   

17.
18.
Abstract

Among the plant constituents of Clerodendrum colebrookianum Walp., acteoside, martinoside, and osmanthuside β6 interact with ROCK, a drug target for cancer. In this study, aglycone fragments of these plant constituents (caffeic acid, ferulic acid, and p-coumaric acid) along with the homopiperazine ring of fasudil (standard ROCK inhibitor) were used to design hybrid molecules. The designed molecules interact with the key hinge region residue Met156/Met157 of ROCK I/II in a stable manner according to our docking and molecular dynamics simulations. These compounds were synthesized and tested in vitro in SW480, MDA-MB-231, and A-549 cancer cell lines. The most promising compound was chemically optimized to obtain a thiourea analog, 6a (IC50 = 25?µM), which has >3-fold higher antiproliferative activity than fasudil (IC50 = 87?µM) in SW480 cells. Treatment with this molecule also inhibits the migration of colon cancer cells and induces cell apoptosis. Further, SPR experiments suggests that the binding affinity of 6a with ROCK I protein is better than that of fasudil. Hence, the drug-like natural product analog 6a constitutes a highly promising new anticancer lead.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
Four novel octreotide analogs with cell‐penetrating peptides (CPPs) at the N‐terminus or C‐terminus were synthesized by a stepwise Fmoc solid‐phase synthesis strategy. The synthesized peptides were analyzed and characterized using reverse phase HPLC and MALDI‐TOF mass spectrometry. The antiproliferative activity of the analogs was tested in vitro on human gastric (SGC‐7901) and hepatocellular cancer (BEL7402) cell lines using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Interestingly, these analogs showed a higher anticancer activities than the parent octreotide except CMTPT03 analog. The results demonstrate that the designed octreotide analogs enhance their anticancer activity after linking together the CPPs to octreotide at the N‐terminus, and are potential molecules for future use in cancer therapy and drug targeting. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Bladder cancer has a high incidence worldwide and is the most common genitourinary cancer. The treatment of bladder cancer involves surgery and chemotherapy; however high failure rates and toxicity are observed. In this context, the search of new drugs aiming a more effective treatment is extremely necessary. Natural products are an important source of compounds with antiproliferative effects. Resveratrol is a naturally occurring plant polyphenol whose anticancer activity has been demonstrated in different types of cancer. This review summarizes the in vitro and in vivo studies using models of bladder cancer treated with resveratrol and discusses its different mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号