首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
This study investigated the effects of dynamic hand-grip exercise on skin-gas acetone concentration. The subjects for this experiment were seven healthy males. In the first experiment, to ascertain the reproducibility of the results for the skin-gas acetone concentration test, the skin gas was collected four times from one subject. In the second experiment, all subjects performed three different types of exercise (Exercises I-III) for a duration of 60 s. Exercise I was performed at 10 kg with one contraction every 3 s. Exercise II was 30 kg with one contraction every 3 s. Exercise III was 10 kg with one contraction per second. Acetone concentration was analyzed by gas chromatography. In the first experiment, reasonable reproducibility was obtained in measurements of skin-gas acetone concentration during the hand-grip exercise. In the second experiment, acetone concentration in skin gas during hand-grip exercise II was significantly higher than the basal level. Although skin-gas acetone levels increased in all subjects during exercises I and III, a significant difference was not found. No significant difference was found in skin-gas acetone concentration during dynamic hand-grip exercise among exercises I, II, and III. This study confirmed that skin-gas acetone levels increase during dynamic hand-grip exercise.  相似文献   

2.
The purpose of this investigation was to measure expired air temperature under cool- and hot-humid environmental conditions at rest and during prolonged exercise to: (1) establish if significant increases in body core temperature affected expired air temperature, and (2) to determine if the temperature setting for heating the pneumotachometer in an open-circuit system requires adjustment during prolonged exercise tests to account for changes in expired air temperature. Six male distance runners completed two tests in cool-humid [dry bulb temperature (T db) 15.5 (SD 1.3)°C, wet bulb temperature (T wb) 12.1 (SD 1.4)°C] and hot-humid [T db 31.6 (SD 0.6)°C, T wb 24.9 (SD 0.6)°C, black globe temperature (T g) 34.3 (SD 0.3)°C] environments, running at a velocity corresponding to 65% [67.1 (SD 2.82)%] of their maximal oxygen uptake. Rectal temperature and expired air temperatures were compared at rest, and after 30 min and 60 min of exercise for each environment. The main finding of this investigation was a significant (P < 0.05) but small increase in expired air temperature between the 30-min and 60-min measures in the hot-humid environment. No significant differences in expired air temperature were found between the 30-min and 60-min measures in the cool-humid environment. These findings suggest that: (1) expired air temperature is influenced by elevations in body core temperature during prolonged exercise in hot-humid conditions, and (2) that the temperature setting for heating the head of the pneumotachometer (after determining the appropriate temperature through measuring expired air temperature for the set environmental condition) may require adjustment during prolonged exercise trials in hot-humid environmental conditions. Accepted: 27 February 1997  相似文献   

3.
The thermoregulatory responses of ten paraplegic (PA; T3/4-L4) and nine able-bodied (AB) upper body trained athletes were examined at rest and during prolonged arm-cranking exercise and passive recovery. Exercise was performed for 90 min at 80% peak heart rate, and at 21.5 (1.7)°C and 47.0 (7.8)% relative humidity on a Monark cycle ergometer (Ergomedic 814E) adapted for arm exercise. Mean peak oxygen uptake values for the PA and AB athlete groups were 2.12 (0.41) min−1 and 3.19 (0.38) l · min−1, respectively (P<0.05). At rest, there was no difference in aural temperature between groups [36.2 (0.4)°C for both groups]. However, upper body skin temperatures for the PA athletes were approximately 1.0 °C warmer than for the AB athletes, whereas lower body skin temperatures were cooler than those for the AB athletes (1.3 °C and 2.7 °C for the thigh and calf, respectively). Upper and lower body skin temperatures for the AB athletes were similar. During exercise, blood lactate peaked after 15 min of exercise for both groups [3.33 (1.26) mmol · l−1 and 4.30 (1.03) mmol · l−1 for the PA and AB athletes, respectively, P<0.05] and decreased throughout the remainder of the exercise period. Aural temperature increased by 0.7 (0.5)°C and 0.6 (0.4)°C for the AB and PA athletes, respectively. Calf skin temperature for the PA athletes increased during exercise by 1.4 (2.8)°C (P<0.05), whereas a decrease of 0.8 (2.0)°C (P<0.05) was observed for the AB athletes. During the first 20 min of recovery from exercise, the calf skin temperature of the AB athletes decreased further [−2.6 (1.3)°C; P<0.05]. Weight losses and changes in plasma volume were similar for both groups [0.7 (0.5) kg and 0.7 (0.4) kg; 5.4 (4.9)% and 9.7 (6.2)% for the PA and AB athletes, respectively]. In conclusion, the results of this study suggest that the PA athletes exhibit different thermoregulatory responses at rest and during exercise and passive recovery to those of upper body trained AB athletes. Despite this, during 90 min of arm-crank exercise in a cool environment, the PA athletes appeared to be at no greater thermal risk than the AB athletes. Accepted: 7 May 1997  相似文献   

4.
There are conflicts between the effects of free radical over-production induced by exercise on neurotrophins and brain oxidative metabolism. The objective of this study was to investigate the effects of intense physical training on brain-derived neurotrophic factor (BDNF) levels, COX activity, and lipoperoxidation levels in mice brain cortex. Twenty-seven adult male CF1 mice were assigned to three groups: control untrained, intermittent treadmill exercise (3 × 15 min/day) and continuous treadmill exercise (45 min/day). Training significantly (P < 0.05) increased citrate synthase activity when compared to untrained control. Blood lactate levels classified the exercise as high intensity. The intermittent training significantly (P < 0.05) reduced in 6.5% the brain cortex COX activity when compared to the control group. BDNF levels significantly (P < 0.05) decreased in both exercise groups. Besides, continuous and intermittent exercise groups significantly (P < 0.05) increased thiobarbituric acid reactive species levels in the brain cortex. In summary, intense exercise promoted brain mitochondrial dysfunction due to decreased BDNF levels in the frontal cortex of mice.  相似文献   

5.
Methods for the determination of trace levels of volatile carbonyl compounds in air expired from mice were developed and validated. Tumor bearing transgenic mice or nontransgenic control mice were placed into a glass chamber through which air was passed continuously at 90 ml/min for 1 h. The effluent gas stream was bubbled into an aqueous cysteamine solution or an aqueous methylhydrazine solution. Formaldehyde, acetaldehyde, and acetone in expired air were derivatized to thiazolidine with cysteamine and malonaldehyde was derivatized to 1-methyl-2-pyrazole with methylhydrazine. The derivatized compounds were analyzed by capillary gas chromatography with flame photometric or nitrogen-phosphorous-specific detection. The lowest level quantitated was 4 micrograms/ml thiazolidine, equivalent to 1.35 micrograms/ml formaldehyde. Formaldehyde was recovered at a level of 1356 +/- 234 nmol/kg0.75 (mean +/- SD) from mice with tumors and 898 +/- 97 nmol/kg0.75 from mice without tumors, suggesting that tumor bearing transgenic mice expired significantly more formaldehyde than did tumor free controls. Amounts of expired acetaldehyde and acetone were not different among mice. Malonaldehyde was not detected in either group of mice.  相似文献   

6.
The objective of the present study was to evaluate a comprehensive set of urinary biomarkers for oxidative damage to lipids, proteins and DNA, in man. Eighteen moderately trained males (mean age 24.6±0.7) exercised 60?min at 70% of maximal O2 uptake on a cycle ergometer. Urine fractions for 12?h were collected 1 day before, and for 3 consecutive days after exercise.

As biomarkers of lipid peroxidation, 8 aldehydes (i.e. propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal and malondialdehyde—MDA)and acetone were analyzed in urines by gas chromatography with electron capture detection (GC-ECD). As a biomarker of protein oxidation, o,o′-dityrosine was analyzed in urine samples by a recently developed isotope dilution HPLC-atmospheric pressure chemical ionization (APCI)-tandem-mass spectrometry (HPLC-APCI-MS/MS) methodology. As a biomarker of oxidative DNA damage, urinary excretion of 8-hydroxy-2′-deoxyguanosine (8-OHdG) was measured by an ELISA method.

On the day of exercise, significant increases were observed in urinary excretions of acetone (?p<0.025, n=18) and butanal (?p<0.01, n=18) in the 12?h daytime fractions compared to the daytime fraction before exercise. The urinary acetone excretion was also significantly (?p<0.05) increased on the 1st day after exercise. Octanal and nonanal were increased in the daytime urine fraction on the 2nd day after exercise. However, these increases were of borderline significance (?p=0.09 and p=0.07, respectively).

Significantly elevated urinary o,o′-dityrosine amounts were observed in the daytime fraction on the day of exercise (?p<0.025) and on the 1st day after exercise (?p=0.07) compared to the before exercise daytime fraction.

Excretion of urinary 8-OHdG was statistically significantly increased in the daytime fractions on the day of exercise (?p=0.07) and on the 1st day after exercise (?p<0.025) compared to before exercise daytime fraction.

Increases in urinary excretions of acetone, propanal, pentanal, MDA and 8-OHdG significantly correlated with training status (hours of exercise/week) of the volunteers, while o,o′-dityrosine did not.

To our knowledge, the present study is the first to evaluate a multi-parameter non-invasive biomarker set for damage to three main cellular targets of ROS. It shows that 1?h of exercise may already induce oxidative damage in moderately trained individuals and that the chosen urinary biomarkers are sensitive enough to monitor such damage.  相似文献   

7.
To investigate the activity of fermented deer antler on exercise endurance capacity, we evaluated endurance capacity in five-week-old male BALB/c mice by administering the fermented deer antler extract (FA) or the non-fermented deer antler extract (NFA) and then subjected the mice to exercise in the form of swimming. The mice administered 500?mg/kg/day of FA showed a significant increase in swimming time compared with mice administered placebo (16.55?min vs. 21.64?min, P?<?0.05). Serum lactate dehydrogenase (LDH), the marker of the liver and muscle damage, was significantly lower in FA groups. However, NFA groups did not show significantly different swimming time or serum LDH from that of the control group. Moreover, the FA-500 group had significantly higher hepatic superoxide dismutase (SOD) activity after forced swimming than the control and NFA groups (P?<?0.05). These findings suggest that fermentation may increase the exercise endurance capacity of the deer antler.  相似文献   

8.
In an attempt to measure gastric emptying of carbohydrate solutions after exercise, we used the 13C acetate breath test to differentiate the gastric emptying of three approximately isoenergetic carbohydrate solutions (i.e. glucose, glucose polymer and sucrose) from each other and from water. On four separate occasions, six post-absorptive subjects walked on an inclined treadmill at 70% maximum oxygen uptake for 1 h and were then given 330 ml of one of the solutions in which 150 mg of sodium 1-[13C] acetate had been dissolved. Breath samples were collected at regular (2–30 min) intervals over the next 3.5 h for analysis of expired 13CO2 by isotope ratio mass spectrometry. When water was given, all subjects reached peak breath enrichment after 30 min, and had a mean (SE) gastric emptying time of 33.2 (1.6) min. Peak breath enrichment occurred later for sucrose and glucose polymer at 54.3 (3.1) min and 59.0 (2.1) min respectively (P < 0.01), and for glucose this was even later, at 62.3 (1.0) min (P < 0.05). Calculated gastric emptying times for sucrose and glucose polymer were almost identical [66.5 (2.5) and 69.8 (2.9) min respectively], whereas that for glucose was significantly slower [76.8 (3.2) min; P < 0.02], probably reflecting the effects of increased osmolality. The gastric emptying of all carbohydrates were significantly longer than for water (P < 0.01). These results show that in the post-exercise state the 13C acetate breath test can be used to differentiate the gastric emptying rates of water and carbohydrate solutions of different properties.  相似文献   

9.
We investigated the effects of a stimulation of pyruvate dehydrogenase (PDH) activity induced by 2-chloropropionate (2-CP) on venous plasma lactate concentration and peak anaerobic power (W an, peak) during periods (6 s) of incremental intense exercise, i.e. a force-velocity (F-) test known to induce a marked accumulation of lactate in the blood. TheF- test was performed twice by six subjects according to a double-blind randomized crossover protocol: once with placebo and once with 2-CP (43 mg · kg–1 body mass). Blood samples were taken at ingestion of the drug, at 10, 20, and 40 Min into the pretest period, at the end of each period of intense exercise, at the end of each 5-min recovery period, and after completion of theF- test at 5, 10, 15, and 30 min. During theF- test, venous plasma lactate concentrations with both placebo and 2-CP increased significantly when measured at the end of each period of intense exercise (F = 33.5,P < 0.001), and each 5-min recovery period (F = 24.6,P < 0.001). Venous plasma lactate concentrations were significantly lower with 2-CP at the end of each recovery period (P < 0.01), especially for high braking forces, i.e. 8 kg (P < 0.05), 9 kg (P < 0.02), and maximal braking force (P < 0.05). After completion of theF- test, venous plasma lactate concentrations were also significantly lower with 2-CP (P < 0.001). The percentage of lactate decrease between 5- and 30-min recovery was significantly higher with 2-CP than with the placebo [59 (SEM 4)% vs 44.6 (SEM 5.5)%,P < 0.05]. Furthermore,W an, peak was significantly higher with 2-CP than with the placebo [1016 (SEM 60) W vs 957 (SEM 55) W,P < 0.05]. In conclusion, PDH activation by 2-CP attenuated the increase in venous plasma lactate concentration during theF- test. Ingestion of 2-CP led to an increasedW an, peak.  相似文献   

10.
These studies investigated the effects of 2 weeks of either a high-fat (HIGH-FAT: 70% fat, 7% CHO) or a high-carbohydrate (HIGH-CHO: 74% CHO, 12% fat) diet on exercise performance in trained cyclists (n = 5) during consecutive periods of cycle exercise including a Wingate test of muscle power, cycle exercise to exhaustion at 85% of peak power output [90% maximal oxygen uptake ( O2max), high-intensity exercise (HIE)] and 50% of peak power output [60% O2max, moderate intensity exercise (MIE)]. Exercise time to exhaustion during HIE was not significantly different between trials: nor were the rates of muscle glycogen utilization during HIE different between trials, although starting muscle glycogen content was lower [68.1 (SEM 3.9) vs 120.6 (SEM 3.8) mmol · kg –1 wet mass, P < 0.01] after the HIGH-FAT diet. Despite a lower muscle glycogen content at the onset of MIE [32 (SEM 7) vs 73 (SEM 6) mmol · kg –1 wet mass, HIGH-FAT vs HIGH-CHO, P < 0.01], exercise time to exhaustion during subsequent MIE was significantly longer after the HIGH-FAT diet [79.7 (SEM 7.6) vs 42.5 (SEM 6.8) min, HIGH-FAT vs HIGH-CHO, P<0.01]. Enhanced endurance during MIE after the HIGH-FAT diet was associated with a lower respiratory exchange ratio [0.87 (SEM 0.03) vs 0.92 (SEM 0.02), P<0.05], and a decreased rate of carbohydrate oxidation [1.41 (SEM 0.70) vs 2.23 (SEM 0.40) g CHO · min–1, P<0.05]. These results would suggest that 2 weeks of adaptation to a high-fat diet would result in an enhanced resistance to fatigue and a significant sparing of endogenous carbohydrate during low to moderate intensity exercise in a relatively glycogen-depleted state and unimpaired performance during high intensity exercise.  相似文献   

11.
To investigate the time-course of changes in transverse relaxation time (T2) and cross-sectional area (CSA) of the quadriceps muscle after a single session of eccentric exercise, magnetic resonance imaging was performed on six healthy male volunteers before and at 0, 7, 15, 20, 30 and 60 min and 12, 24, 36, 48, 72 and 168 h after exercise. Although there was almost no muscle soreness immediately after exercise, it started to increase 1 day after, peaking 1–2 days after the exercise (P<0.01). Immediately after exercise, T2 increased significantly in the rectus femoris, vastus lateralis and intermedius muscles (P<0.05) and decreased quickly continuing until 60 min after exercise. At and after the 12th h, a significant increase was perceived again in the T2 values of the vastus lateralis and intermedius muscles (P<0.01) [maximum 9.3 (SEM 2.8)% and 10.9 (SEM 2.2)%, respectively]. The maximal values were exhibited at 24–36 h after exercise. In contrast, the rectus femoris muscle showed no delayed-stage increase. Also, in CSA, an increase after 12 h was observed in addition to the one immediately after exercise in the vastus lateralis, intermedius and medialis and quadriceps muscles as a whole (P < 0.01), reaching the maximal values at 12–24 h after exercise. The plasma creative kinase activity remained unchanged up to 24 h after and then increased significantly 48 h after exercise (P < 0.05). Beginning 12 h after exercise, the subjects whose T2 and CSA increased less than the others displayed a faster decrease in muscle soreness. These results suggested that T2 and CSA displayed bimodal responses after eccentric exercise and the time-courses of changes in them were similar to those in muscle soreness.  相似文献   

12.
Fungal particles can be considered a potential risk factor in children causing asthma, rhinitis, and allergy. However, a direct relationship between mold exposure and respiratory symptoms is difficult to establish, particularly if volumetric results are not well documented, as is often the case in Mexico. In order to assess mold exposure in some asthmatic childrens’ homes, eight asthmatic children were selected. For each child, lung function was measured by spirometry and the flow expiratory volume drop in the first second (FEV1) as well as the CVF were estimated at 5, 10 and 15 min, after a running period on a treadmill. Exercise induced asthma (EIA) was defined as a FEV1 drop <10% or FEV1/CVF drop >10%. Atopy was estimated by skin testing of allergen extracts. Each room was volumetrically sampled using Burkard Personal samplers, every week for a month and with different degrees of activity. Fungal composition was mostly dominated by allergenic molds, spores smaller than 10 μm and non-seasonal molds. Concentrations ranged from 0 to 2087 CFU/m3 and 102 553–29 522 200 spores/m3, being significantly higher in indoor air, but the differences between rooms or weeks were not significant, either for CFUs (P>0.27) or for total particles (P>0.80). In general, mold counts were dominated byPenicillium spp. andCladosporium spp. especiallyP. aurantiogriseum andC. cladosporioides. We observed that the median concentration values were in general higher for children with exercise induced asthma (EIA). But the differences were significant only for EIA and degree, of asthma particularly for total (P=0.038), mycotoxin producers (P<0.009), seasonal molds (P<0.006) andPenicillium spp. (P=0.012). Total spore counts showed the highest median values in children without EIA, moderate asthma degree and no atopy. Significant differences were found for almost all spore, type groupings when comparing the presence of EIA (P<0.05) or asthma degree categories (P<0.030), but no differences were observed for atopy (P>0.21). We conclude that respiratory symptoms as described by EIA, asthma severity and atopy may give a good correlation with fungal concentrations and especially comparisons based on their physical and chemical properties.  相似文献   

13.
SUMMARY This study was designed to investigate the effect of acute and chronic high-intensity treadmill exercise on changes in plasma lactate and brain neuropeptide (NPY), leucine-enkephalin (L-ENK), and dynorpin A1–13 (DYN A1–13). Avidin–biotin complex (ABC) immunohistochemistry and image pattern analysis were used to observe the effect of chronic (total 7 weeks) and acute treadmill exercise (an initial speed of 15 m min−1 gradually increased to 35 m min−1 with 0°, 20–25 min per day duration) on the changes of NPY, L-ENK, and DYN A1–13 in different areas of rat brain. Plasma lactate was also measured in response to such exercise. Compared with preexercise control (P < 0.01), plasma lactate concentration significantly increased in the immediate postexercise; but it returned to the normal level soon after the 30 min postexercise. The content of NPY in paraventricular (PVN), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei continued to increase in 0, 30, and 180 min postexercise compared with preexercise control (P < 0.01). The content of L-ENK in caudate-putamen (CPu) significantly increased in the immediate postexercise compared with preexercise control (P < 0.01), but it gradually returned to the normal level after the 180 min postexercise. However, the content of DYN A1–13 in PVN rose substantially only in 30 min postexercise in comparison with the preexercise control (P < 0.01). Thus, different changes of NPY, L-ENK, and DYN A1–13 in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents of NPY in different brain regions continuously remain at a high level after such high-intensity exercise. And this high level might reduce energy expenditure and thus contribute to the stimulation of brain NPY neurons.  相似文献   

14.
The purpose of this study were: (1) to establish the prevalence of exercise-induced hematuria in a group of otherwise healthy male runners (n = 70), and (2) to investigate the role of exercise intensity in those runners who exhibited exercise-related hematuria (n = 10) by evaluating the effect of running and cycling at high and low intensities. The identified and recruited subjects participated in four different exercise protocols: (1) a 60-min treadmill run (RUN) at 90% of anaerobic threshold (Thae), (2) a 60-min leg cycle ergometer ride (BIKE) at 90% of Thae, (3) a 3×400-m sprint (SPRINT), each followed by 4 min of rest or light walking, and (4) 3×60-Wingate leg cycle ergometry tests, each followed by 4 min of rest or light cycling. The study employed a 3×4 (time by protocol) within-subjects design and dependent variables were measured before exercise, 4 min after, and 1 h after exercise, and included measurements of hematuria, proteinuria, urinary pH, serum haptoglobin concentration, serum creatine phosphokinase activity, plasma lactate concentration, and hemoglobin. The 400-m sprint at maximal effort significantly increased both hematuria and proteinuria (P < 0.01). Post-exercise hematuria for the SPRINT protocol was significantly different than that for the BIKE (P < 0.01) and RUN (P < 0.01) protocols. Due to the significant increase in hematuria and proteinuria following the SPRINT protocol, it was concluded that exercise-related changes in renal function were associated with weight-bearing exercise intensity rather than non-weight-bearing exercise duration. Accepted: 30 April 1998  相似文献   

15.
Summary The structure, dimensions and gas exchanging properties of the lungs of the Australian Carpet PythonMorelia spilotes variegata have been studied by dissection, by sampling lung gas and pulmonary venous blood and by using radioactive techniques to monitor distribution of ventilation ( ) and blood flow ( ). The lungs have alveolar and saccular parts (mean capacities 10.2 and 129.3 ml/kg body weight, respectively). The sacs store inspired air creating a flow through situation which abolishes the dead space effect, prevents large expansions of the alveolar lung and allows gas exchange during both inspiration and expiration. Gas exchange was measured in intubated snakes in the resting and active states at 20–26 °C. In the resting state, respiratory frequency, tidal volume and ventilation were 1.72±0.56/min, 14.8±10.8 ml/kg, 22.04±7.75 ml/kg · min and pulmonary venousP O 2,P CO 2 and pH were 58.9±14.5 Torr, 21.5±4.2 Torr, and 7.55±0.07 Torr, respectively. R. Q. was low, 0.65±0.11. In the active state both ventilation ( ) and cardiac output increase and blood flow is redistributed more evenly along the alveolar lung, enabling increased O2 uptake. Since blood flow ( ) in the alveolar lung is stratified (Read and Donnelly, 1972) redistribution of during activity is proposed as a possible reserve capacity for O2 extraction by reptilian lungs.  相似文献   

16.
Respiration of the air breathing fishPiabucina festae   总被引:1,自引:1,他引:0  
Summary Piabucina festae, a Central American stream fish, breathes air frequently, even in air saturated water, however, is not an obligate air breather. Without access to air, it can maintain routine by aquatic respiration down to aP wO2 of about 70 Torr which is its critical O2 tension (P cO2, Fig. 5). Aerial respiration averages 10% of total in air saturated water and 70% in hypoxic water (Fig. 4). At lowP wO2 air breathing is more frequent (Fig. 1), and more O2 is utilized from each air breath (Table 3), and tidal volume may increase (Fig. 7). Vascularized respiratory compartments or cells (Fig. 6), located in the second chamber of the physostomus gas bladder, function for aerial respiration. In ventilation air is gulped and forced through a large pneumatic duct into the gas bladder, excess gas is then released through opercula. Inspiration always precedes expiration and tidal volume is small, keeping gas bladderP O 2 low (Table 4). Major differences in the air breathing physiology ofP. festae and other species are its higherP cO2, a low aerial in normoxic water, even though air gulps are frequent, and its pattern of inhalation prior to expiration. The interrelationship and optimization of the three gas bladder functions (buoyancy, sound reception, and air breathing) inP. festae is discussed. Aerial respiration may have evolved secondarily to the gas bladder's function in buoyancy control.  相似文献   

17.
In diving, pulmonary mechanical function is limited by the increased density of the gas breathed. Breathing cold and dry gas may cause an additional increase in airways resistance. We have measured forced vital capacity, forced expired volume in 1 s (FEV1) and forced midexpiratory flow rate (FEF25%–75%) before and after breathing dry or humid gas at 29–32°C during a standardized exercise intensity on a cycle ergometer at an ambient pressure of 3.7 MPa. The atmosphere was a helium and oxygen mixture with a density of 6.8 kg · m–3. Six professional saturation divers aged 26–37 years participated in the study. There were no significant differences in convective respiratory heat loss between the exposures. The mean evaporative heat loss was 67 W (range 59–89) breathing dry gas and 37 W (range 32–43) breathing humid gas, corresponding to water losses of 1.7 g · min–1 (range 1.5–2.2) and 0.9 g · min–1 (range 0.8–1.1), respectively. There was a significant reduction in FEV1 of 4.6 (SD 3.6)% (P<0.05), and in FEF25%–75% of 5.8 (SD 4.7)% (P<0.05) after breathing dry gas. There were no changes after breathing humid gas. By warming and humidifying the gas breathed in deep saturation diving bronchoconstriction may be prevented.  相似文献   

18.
To examine the influence of light exercise on cardiac responses during recovery from exercise, we measured heart rate (HR), stroke volume (SV), and cardiac output ( c) in five healthy untrained male subjects in an upright position before, during, and after 10-min steady-state cycle exercise at an exercise intensity of 170 W, corresponding to a mean of 68 (SD 4)% of maximal oxygen uptake. The recovery phase was evaluated separately for three different conditions: 10 min of complete rest (passive recovery), 7 min of pedalling at 20-W exercise intensity followed by 3 min of rest (partially active recovery), and 7 min of pedalling at 40-W exercise intensity followed by 3 min of rest (partially active recovery), on an upright cycle ergometer. The time courses of decreases in HR in the two active recovery phases at different exercise intensities were almost identical to those in the passive recovery phase. However, the subsequent HR reductions during the rest after active recovery at 20 W and at 40 W were mean 7.5 (SD 4.4) and mean 10.0 (SD 3.1) beats · min−1, respectively, both of which were significantly larger (P<0.05 and P<0.005) than the corresponding reduction [1.4 (SD 2.5) beats · min−1] for passive recovery. The SV values at the two exercise intensities during the active recovery periods were maintained at levels similar to that during 170-W steady-state exercise. In contrast, the SV during passive recovery decreased gradually to a level significantly below the initial baseline level at rest before exercise (P<0.05). The resultant time courses of CO values during active recovery were significantly higher (each P<0.05) than that during passive recovery. It was concluded from these findings that light post-exercise physical activity plays an important role in facilitating the venous return from the muscles and in restoring the elevated HR to the pre-exercise resting level. Accepted: 17 September 1997  相似文献   

19.
Objective: Sedentariness is associated with weight gain and obesity. A treadmill desk is the combination of a standing desk and a treadmill that allow employees to work while walking at low speed. Design and Methods: The hypothesis was that a 1‐year intervention with treadmill desks is associated with an increase in employee daily physical activity (summation of all activity per minute) and a decrease in daily sedentary time (zero activity). Employees (n = 36; 25 women, 11 men) with sedentary jobs (87 ± 27 kg, BMI 29 ± 7 kg/m2, n = 10 Lean BMI < 25 kg/m2, n = 15 Overweight 25 < BMI < 30 kg/m2, n = 11 Obese BMI > 30 kg/m2) volunteered to have their traditional desk replaced with a treadmill desk to promote physical activity for 1 year. Results: Daily physical activity (using accelerometers), work performance, body composition, and blood variables were measured at Baseline and 6 and 12 months after the treadmill desk intervention. Subjects who used the treadmill desk increased daily physical activity from baseline 3,353 ± 1,802 activity units (AU)/day to, at 6 months, 4,460 ± 2,376 AU/day (P < 0.001), and at 12 months, 4,205 ± 2,238 AU/day (P < 0.001). Access to the treadmill desks was associated with significant decreases in daily sedentary time (zero activity) from at baseline 1,020 ± 75 min/day to, at 6 months, 929 ± 84 min/day (P < 0.001), and at 12 months, 978 ± 95 min/day (P < 0.001). For the whole group, weight loss averaged 1.4 ± 3.3 kg (P < 0.05). Weight loss for obese subjects was 2.3 ± 3.5 kg (P < 0.03). Access to the treadmill desks was associated with increased daily physical activity compared to traditional chair‐based desks; their deployment was not associated with altered performance. For the 36 participants, fat mass did not change significantly, however, those who lost weight (n = 22) lost 3.4 ± 5.4 kg (P < 0.001) of fat mass. Weight loss was greatest in people with obesity. Conclusions: Access to treadmill desks may improve the health of office workers without affecting work performance.  相似文献   

20.
The effects of exercise on gastric emptying remain controversial, with some workers reporting that heavy exercise inhibits it to varying degrees whereas others report no effects up to an intensity of 70% maximal oxygen consumption (O2max). The state of hydration of the subjects and the environmental conditions may influence the rate of gastric emptying during exercise. To understand further the effects of a 3-h, 16-km walk/run carrying 30 kg of equipment under field conditions at 39°C, we estimated gastric emptying using a [13C]acetate breath test method. Breath samples were collected at intervals after giving 150 mg of [13C]acetate. The effects of giving a standard volume (530 ml) of water or dextrose (7.5 g · 100 ml−1) with electrolytes or fructose/corn solids (7.5 g · 100 ml−1) at rest before exercise were compared with those of exercise and of recovery after exercise with or without extra fluids (400 ml each 20 min). At rest, after a standard 530-ml load, gastric emptying times [mean (SE)] were: 37 (2) min (water), 46 (3) min (dextrose/electrolytes) and 47 (5) min (fructose/corn solids) and were significantly slower (P < 0.05) than those occurring after extra fluid ingestion, i.e. 32 (3), 39 (2) and 41 (3) min respectively. After a standard 530-ml load, emptying times during exercise were almost identical to those at rest but, during exercise, extra fluid speeded up gastric emptying more than at rest to 24 (2), 26 (1) and 27 (5) min (P < 0.05) respectively. During resting recovery without extra fluids, gastric emptying was significantly slowed to 60 (2), 71 (5) and 78 (3) min, respectively. Although emptying times during recovery from exercise with extra fluid were faster [49 (6), 55 (2) and 58 (4) min, respectively], they were still slower than before exercise. The results suggest that: (1) extra fluid increases gastric emptying more during exercise than at rest, and (2) gastric emptying during resting recovery from exercise is slower than at rest before exercise whether or not fluid has previously been taken. Accepted: 17 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号