首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation is thought to be one of the major contributors to carcinogenesis. Accumulated studies in this field revealed that free radicals produced by inflammatory cells not only cause direct damage to DNA but also exert indirect effects such as de-regulation of cell proliferation and apoptosis, stimulation of angiogenesis, and modification of gene/protein expressions and protein activities, all of which are a critical step toward carcinogenesis. Free radicals have also been reported to act as both initiator and promoter of carcinogenic process. Recent evidence shows that free radicals convert benign tumors to more malignant ones (i.e. tumor progression) leading to the final stage of carcinogenesis. This article reviews the current findings linking inflammation and cancer, and shed light on inflammatory cell-derived free radicals as major endogenous reactive substances for tumor development and progression.  相似文献   

2.
Oxidative stress and experimental carcinogenesis   总被引:6,自引:0,他引:6  
  相似文献   

3.
Abstract

A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.  相似文献   

4.
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   

5.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   

6.
Glycolysis is regarded as the hallmark of cancer development and progression, which involves a multistep enzymatic reaction. This study aimed to explore the clinicopathological significance and potential role of glycolytic enzyme aldolase A (ALDOA) in the carcinogenesis and progression of gastric cancer (GC). ALDOA was screened from three paired liver metastasis tissues and primary GC tissues and further explored with clinical samples and in vitro studies. The ALDOA protein level significantly correlated with a larger tumor diameter (P = .004), advanced T stage (P < .001), N stage (P < .001) and lymphovascular invasion (P = .001). Moreover, the expression of ALDOA was an independent prognostic factor for the 5‐year overall survival and disease‐free survival of patients with GC in both univariate and multivariate survival analyses (P < .05). Silencing the expression of ALDOA in GC cell lines significantly impaired cell growth, proliferation and invasion ability (P < .05). Knockdown of the expression of ALDOA reversed the epithelial–mesenchymal transition process. Mechanically, ALDOA could affect the hypoxia‐inducible factor (HIF)‐1α activity as demonstrated by the HIF‐1α response element–luciferase activity in GC cells. Collectively, this study revealed that ALDOA was a potential biomarker of GC prognosis and was important in the carcinogenesis and progression of human GC.  相似文献   

7.
Abstract

Reactive oxygen species (ROS) have been shown to be associated with a wide variety of pathological phenomena such as carcinogenesis, inflammation, radiation and reperfusion injury. Iron, the most abundant transition metal ion in our body, may work as a catalyst for the generation of ROS in pathological conditions. In the past few years, there have been great advances in the understanding of iron metabolism. These include the discoveries of iron transporters and the gene responsible for hereditary hemochromatosis. Iron overload has been shown to be associated with carcinogenesis. We recently identified the major target genes (p16INK4A and p15INK4B tumor suppressor genes, which encode cyclin-dependent kinase inhibitors) in a ferric nitrilotriacetate-induced rat renal carcinogenesis model, in which the Fenton reaction is induced in the renal proximal tubules. Allelic loss of the p16 gene occurs early in carcinogenesis and specifically at the p16 loci as compared with other tumor suppressor genes. This led to the novel concept of 'genomic sites vulnerable to the Fenton reaction'. Here, recent new findings on iron metabolism are reviewed and the concept of the vulnerable sites explored. More effort to link iron metabolism with human carcinogenesis is anticipated.  相似文献   

8.
In this work, we evaluated the antioxidant properties of the eight novel silybin analogues for their capacity to scavenge free radicals including superoxide anion radicals and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals in vitro. Compound 7d demonstrated an excellent antioxidant effect in scavenging superoxide anion free radical with an IC50 value of 26.5 μM, while the IC50 of quercetin (the reference compound) was 38.1 μM. Compounds 7b, 7e, 7h showed certain scavenging activities for both types of free radicals.  相似文献   

9.
10.
Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his+ reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H2O2/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H2O2/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H2O2 formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.  相似文献   

11.
Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF‐associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56‐2, is a tumor necrosis factor receptor 1‐interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL‐8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence.  相似文献   

12.
Chromium (VI) compounds are widely recognized as human carcinogens. Extensive studies in vitro and in model systems indicate that the reactive intermediate, Cr (V), generated by cellular reduction of Cr (VI), is likely the candidate for the ultimate carcinogenic form of chromium compounds. Here we review our current understanding of the in vivo reduction of Cr (VI) and its related free radical generation. Our results demonstrate that Cr (V) is indeed generated from the reduction of Cr (VI) in vivo, and that Cr (V) thus formed can mediate the generation of free radicals. Cr (V) and its related free radicals are very likely to be involved in the mechanism of Cr (VI)induced toxicity and carcinogenesis. These studies also illustrate that in vivo EPR spectroscopy and magnetic resonance imaging can be very useful and powerful tools for studying paramagnetic metal ions in chemical and biochemical reactions occurring in intact animals.  相似文献   

13.
《Free radical research》2013,47(5):337-345
Abstract

The major causes for cataract formation are free radicals, and these free radicals are neutralized by the presence of endogenous antioxidants in the eye. Using xenobiotics, it has been confirmed that free radicals mediate the formation of cataract. Two cataract model-selenite model and the diabetic cataract model-have been developed to study the pathophysiology of cataract formation due to free radicals and the role of antioxidants during the process of cataractogenesis. This review focuses on natural compounds with antioxidant properties that could actually be applied as an interventional strategy on a large scale and are also relatively inexpensive. A brief overview of plants with antioxidant properties that in addition possess potential anti-cataract properties has been discussed. In addition to plants, three natural compounds (curcumin, vitamin C and vitamin E), on which a lot of data exist showing anti-cataract and antioxidant activities, have also been discussed. These antioxidants can be supplemented in the diet for a better defence against free radicals. Studies on vitamin C and vitamin E have proved that they are capable of preventing lipid peroxidation, thereby preventing the generation of free radicals, but their efficacy as anti-cataract agent is questionable. Unlike vitamins C and E, curcumin is well established as an anti-cataract agent, but the issue of curcumin bioavailability is yet to be addressed. Nanotechnology proves to be a promising area in increasing the curcumin bioavailability, but still a lot more research needs to be done before the use of curcumin as an effective anti-cataract agent for humans.  相似文献   

14.
Indoleamine 2,3-dioxygenase (IDO) is generally considered to be immunosuppressive but recent findings suggest this characterization oversimplifies its role in disease pathogenesis. Recently, we showed that IDO is essential for tumor outgrowth in the classical two-stage model of inflammatory skin carcinogenesis. Here, we report that IDO loss did not exacerbate classical inflammatory responses. Rather, IDO induction could be elicited by environmental signals and tumor promoters as an integral component of the inflammatory tissue microenvironment even in the absence of cancer. IDO loss had limited impact on tumor outgrowth in carcinogenesis models that lacked an explicit inflammatory tumor promoter. In the context of inflammatory carcinogenesis where IDO was critical to tumor development, the most important source of IDO was radiation-resistant non-hematopoietic cells, consistent with evidence that loss of the IDO regulatory tumor suppressor gene Bin1 in transformed skin cells facilitates IDO-mediated immune escape by a cell autonomous mechanism. Taken together, our results identify IDO as an integral component of ‘cancer-associated’ inflammation that tilts the immune system toward tumor support. More generally, they promote the concept that mediators of immune escape and cancer-associated inflammation may be genetically synonymous.  相似文献   

15.
《Free radical research》2013,47(5):665-673
Abstract

The survival of Leishmania parasites within macrophages is influenced by generation of free radicals. To establish whether generation of free radicals influenced chemotherapeutic response, promastigotes from isolates causing self-healing or delayed/non-self-healing cutaneous leishmaniasis (CL) or visceral leishmaniasis (VL) were evaluated for their susceptibility to nitric oxide (NO), antimony and miltefosine. In a self-healing CL strain of Leishmania major (5ASKH), susceptibility to NO and antimony was higher than other species. Likewise, a Leishmania amazonensis strain, M2269, showed greater susceptibility to NO and antimony than other species but no such correlation was observed with miltefosine. Additionally, 5ASKH and M2269 showed poorer free radical scavenging capacity as also their thiol levels were lower than species causing VL. Collectively, our study suggests that self-healing isolates tend to be more susceptible to oxidative stress.  相似文献   

16.
Oxygen free radicals and the systemic inflammatory response   总被引:12,自引:0,他引:12  
Closa D  Folch-Puy E 《IUBMB life》2004,56(4):185-191
The generation of oxygen free radicals is known to be involved in the development of the systemic inflammatory response syndrome. In addition to their actions as noxious mediators generated by inflammatory cells, these molecules play also a crucial role contributing to the onset and progression of inflammation in distant organs. In the early stages of the process, free radicals exert their actions via activation of nuclear factors, as NFkappaB or AP-1, that induce the synthesis of cytokines. In later stages, endothelial cells are activated due to the synergy between free radicals and cytokines, promoting the synthesis of inflammatory mediators and adhesion molecules. Finally, free radicals exert their toxic effects at the site of inflammation by reacting with different cell components, inducing loss of function and cell death. This review focuses on progress in the understanding the different actions of free radicals at the sequential stages of the development of the systemic inflammatory response.  相似文献   

17.
18.
《Free radical research》2013,47(4):276-282
Abstract

Non-ionizing radiation electromagnetic pulse (EMP) is generally recorded to induce the generation of free radicals in vivo. Though mitochondria are the primary site to produce free radicals, a rare report is designed to directly investigate the EMP effects on free radical generation at mitochondrial level. Thus the present work was designed to study how EMP induces free radical generation in rat liver mitochondria in vitro using electron paramagnetic resonance technique. Surprisingly, our data suggest that EMP prevents free radical generation by activating antioxidant enzyme activity and reducing oxygen consumption and therefore free radical generation. Electron spin resonance measurements clearly demonstrate that disordering of mitochondrial lipid fluidity and membrane proteins mobility are the underlying contributors to this decreased oxygen consumption. Therefore, our results suggest that EMP might hold the potentiality to be developed as a non-invasive means to benefit certain diseases.  相似文献   

19.
《Free radical research》2013,47(4):219-227
The addition of 25μM hydrogen peroxide to 20μM metmyoglobin produces ferryl (FeIV = O) myoglobin. Optical spectroscopy shows that the ferryl species reaches a maximum concentration (60-70% of total haem) after 10 minutes and decays slowly (hours). Low temperature EPR spectroscopy of the high spin metmyoglobin (g = 6) signal is consistent with these findings. At this low peroxide concentration there is no evidence for iron release from the haem. At least two free radicals are detectable by EPR immediately after H2O2 addition, but decay completely after ten minutes. However, a longer-lived radical is observed at lower concentrations that is still present after 90 minutes. The monohydroxamate N-methylbutyro-hydroxamic acid (NMBH) increases the rate of decay of the fenyl species. In the presence of NMBH, none of the protein-bound free radicals are detectable; instead nitroxide radicals produced by oxidation of the hydroxamate group are observed. Similar results are observed with the trihydroxamate, desferoxamine. “Ferryl myoglobin” is still able to initiate lipid peroxidation even after the short-lived protein free radicals are no longer detectable (E.S.R. Newman, C.A. Rice-Evans and M.J. Davies (1991) Biochemical and Biophysical Research Communications 179, 1414-1419). It is suggested that the longer-lived protein radicals described here may be partly responsible for this effect. The mechanism of inhibition of initiation of lipid peroxidation by hydroxamate drugs, such as NMBH, may therefore be due to reduction of the protein-derived radicals, rather than reduction of ferryl haem.  相似文献   

20.
Free radicals, antioxidant enzymes, and carcinogenesis   总被引:29,自引:0,他引:29  
Free radicals are found to be involved in both initiation and promotion of multistage carcinogenesis. These highly reactive compounds can act as initiators and/or promoters, cause DNA damage, activate procarcinogens, and alter the cellular antioxidnt defense system. Antioxidants, the free radicals scavengers, however, are shown to be anticarcinogens. They function as the inhibitors at both initiation and promotion/transformation stage of carcinogenesis and protect cells against oxidative damage.

Altered antioxidant enzymes were observed during carcinogenesis or in tumors. When compared to their appropriate normal cell counterparts, tumor cells are always low in manganese superoxide dismutase activity, usually low in copper and zinc superoxide dismutase activity and almost always low in catalase activity. Glutathione peroxidase and glutathione reductase activities are highly variable. In contrast, glutathione S-transferase 7-7 is increased in many tumor cells and in chemically induced preneoplastic rat hepatocyte nodules. Increased glucose-6-phosphate dehdyrogenase activity is also found in many tumors. Comprehensive data on free radicals, antioxidant enzymes, and carcinogenesis are reviewed. The role of antioxidant enzymes in carcinogenesis is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号