首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.  相似文献   

2.
Highly purified liver microsomal cytochrome P-450 acts as a peroxygenase in catalyzing the reaction, RH+ XOOH→ROH+XOH, Where RH represents any of a large variety of foreign or physiological substrates and ROH the corresponding product, and XOOH represents any of a series of peroxy compounds such as hydroperoxides or peracids serving as the oxygen donor and XOH the resulting alcohol or acid. Several experimental approaches in this and other laboratories have yielded results compatible with a homolytic mechanism of oxygen-oxygen bond cleavage but not with the heterolytic formation of a common iron-oxo intermediate from the various peroxides. Recently, we have found a new reaction, catalyzed by the reconstituted system containing the phenobarbital-inducible form of P-450, which catalyzes the reductive cleavage of hydroperoxides: XRR’C-OOH+ NADPH+H+→ XR’CO + R’H+H2O + NADP+ Thus, cumyl hydroperoxide yields acetophenone and methane, and 13-hydroperoxyoctadeca-9, 11-dienoic acid yields pentane and an as yet unidentified additional product. Since hydroperoxide reduction does not produce the corresponding alcohol, it is concluded that homolytic cleavage of the oxygen-oxygen bond occurs with rearrangement of the resulting alkoxy radical. Studies are in progress to determine how broad a role the new hydroperoxide cleavage reaction plays in the biological peroxidation of lipids.  相似文献   

3.
Methods were developed for the separation and measurement of lipid and protein hydroperoxides, which can be used for biological materials. Lipids were extracted with methanol:chloroform and their hydroperoxides measured in solutions of methanol and chloroform containing 110mM perchloric acid, xylenol orange, and ferrous iron. Proteins were isolated by precipitation with 0.2M perchloric acid. The precipitates were redissolved in 6M guanidine hydrochloride and washed with chloroform, and the hydroperoxides were measured in the presence of perchloric acid, xylenol orange, and ferrous iron. Optimum conditions for hydroperoxide measurements were established and the assays were applied to oxidized human blood serum and to cultured cells.  相似文献   

4.
Linoleate hydroperoxides undergo rearrangement leading to their isomerisation in which the OOH group is relocated or the stereochemistry of a double bond changed, or both. The reaction was studied mainly with pure isomers of methyl hydroperoxylinoleates since conditions could be found in which rearrangement occurred with little accompanying decomposition. The rearrangement was found to be non-stereoselective and took place by a free-radical chain mechanism. Using 18O-labelled hydroperoxide on 18O2, it was shown that the oxygen atoms of the OOH group of the hydroperoxides exchanged with surrounding molecular oxygen during the rearrangement. A mechanism for the rearrangement is proposed.  相似文献   

5.
Oxygen is necessary for aerobic metabolism but can cause the harmful oxidation of lipids and other macromolecules. Oxidation of cholesterol and phospholipids containing polyunsaturated fatty acyl chains can lead to lipid peroxidation, membrane damage, and cell death. Lipid hydroperoxides are key intermediates in the process of lipid peroxidation. The lipid hydroperoxidase glutathione peroxidase 4 (GPX4) converts lipid hydroperoxides to lipid alcohols, and this process prevents the iron (Fe2+)‐dependent formation of toxic lipid reactive oxygen species (ROS). Inhibition of GPX4 function leads to lipid peroxidation and can result in the induction of ferroptosis, an iron‐dependent, non‐apoptotic form of cell death. This review describes the formation of reactive lipid species, the function of GPX4 in preventing oxidative lipid damage, and the link between GPX4 dysfunction, lipid oxidation, and the induction of ferroptosis.  相似文献   

6.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

7.
Earlier the catalase-insensitive formation of organic hydroperoxides (via the interaction of organic radicals produced due to redox activity of P680 (or TyrZ·) with molecular oxygen) has been found in Mn-depleted PS2 preparations (apo-WOC-PS2) by Khorobrykh et al. (Biochemistry 50:10658–10665, 2011). The present work describes a second pathway of the photoproduction of organic peroxides on the donor side of PS2. It was shown that illumination of CaCl2-treated PS2 membranes (deprived of the PS2 extrinsic proteins without removal of the Mn-containing water-oxidizing complex) (CaCl2-PS2) led to the photoproduction of highly lipophilic organic hydroperoxides (LP-OOH) (in amount corresponding to 1.5 LP-OOH per one reaction center of PS2) which significantly increased upon the addition of exogenous electron acceptor potassium ferricyanide (to 4.2 LP-OOH per one reaction center). Addition of catalase (200 U/ml) before illumination inhibited ferricyanide-induced photoproduction of hydroperoxides while no effect was obtained by adding catalase after illumination or by adding inactivated catalase before illumination. The hydroperoxide photoproduction was inhibited by the addition of exogenous electron donor for PS2, diphenylcarbazide or diuron (inhibitor of the electron transfer in PS2). The addition of exogenous hydrogen peroxide to the CaCl2-PS2 led to the production of highly lipophilic organic hydroperoxides in the dark (3.2 LP-OOH per one reaction center). We suggest that the photoproduction of highly lipophilic organic hydroperoxides in CaCl2-PS2 preparations occurs via redox activity of H2O2 produced on the donor side of PS2.  相似文献   

8.
A combined system of chemiluminescence detection and high performance liquid chromatography (CL–HPLC) was developed to determine primary peroxidation products in biological tissues, such as phosphatidylcholine hydroperoxide (PCOOH). The CL–HPLC assay consists of separation of lipid classes with HPLC and detection of hydroperoxide-specific chemiluminescence. Hydroperoxides react with heme compounds to produce oxidants as suggested by our early studies on tissue low-level chemiluminescence in which singlet molecular oxygen is generated as one of the excited species in several biological systems involving free radical events. In the CL–HPLC method, a cytochrome c–luminol mixture was used as a hydroperoxide-specific luminescent reagent, and the quantification of hydroperoxide was performed by detecting chemiluminescence due to the luminol oxidation caused by the oxidant produced during the lipid hydroperoxides with heme. The detection limit of PCOOH was 10 pmole hydroperoxide–O2. PCOOH in normal human blood was found to be 10–500 pmol/ml plasma and significantly higher levels of PCOOH were observed in some hospitalized patients.  相似文献   

9.
BackgroundPeroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood.MethodsLive cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH.ResultsExposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH).ConclusionsLong chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation.SignificanceThese results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.  相似文献   

10.
Summary Inasmuch as it is known that the toxicity of anesthetic agents is potentiated by hypoxia and that the reductive metabolism of these agents results in the formation of lipid hydroperoxides, we investigated the toxicity of hydroperoxides under low-oxygen concentrations. We found that hypoxia exacerbates the toxicity oft-butyl hydroperoxide, shifting the dose-response curve oft-butyl hydroperoxide vs. lysis of hepatocytes approximately an order of magnitude to the left. Furthermore, although at the end of a 4-h exposure to 0.5% O2 hepatocyte monolayers seemed normal by three indices (release of51Cr and serum glutamate transaminase or exclusion of trypan blue), they were completely lysed after an additional 20 h reoxygenation at 20%. O2. In contrast, monolayers exposed to 2% O2 for 4 h seemed normal after 20 h reoxygenation. However, cells exposed to both a subtoxic dose of hydroperoxide and 4 h of 2% O2, although seeming healthy at the end of the hypoxic period, were completely lysed within 20 h after reoxygenation. The study was supported by grant OH 00978 from the National Institutes for Occupational Safety and Health, Atlanta, Georgia.  相似文献   

11.
BackgroundAerobic organisms have to overcame the dangerous species derived from the unquestionable favorable effects due to the utilization of oxygen in the cellular respiration. 2,3-Diphosphoglycerate (DPG) could be one of the molecules able to perform different role inside the cells and (from the data obtained from our experimental work) may help cellular components, in particular hemoglobin, to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS).MethodsTherefore, we have investigated the kinetic and antioxidant properties of this molecule against the main biological reactive species and the protective role of this molecules on hemoglobin treated with strong oxidant.ResultsDPG, at the physiological concentration is able to scavenge hydroxyl radical, peroxyl radical, cation radicals and to chelate iron in the reduced state. Moreover it is able to avoid oxidation of iron inside the hemoglobin following treatment with nitrite and tert-butyl hydroperoxide (t-BOOH). On the other side, it is not able to protect membrane components from oxidative burning. This different behavior towards radical species is probably linked to the polarity of the molecule and also the high levels of charged groups present on the surface of DPG, that avoid the possibility to act in an environment almost completely hydrophobic, as inside the membrane, where reactive species produce the main damages during the reactions of peroxidation.ConclusionsThis is the first paper dealing with the potential role of DPG not only as a modulator of oxygen affinity in hemoglobin, but also as a scavenger of radicals.  相似文献   

12.
Thiobarbituric acid (TBA) assays which have been modified for detection of lipid hydroperoxides appear to be useful for demonstration of in vivo lipid peroxidation. Since these methods require heating tissue membranes with the buffered TBA, there is a possibility of interference from the detection of autoxidation that occurs during heating. These studies were undertaken to investigate conditions which favor TBA color production from hydroperoxide while limiting autoxidation during the assay. An acetic acid-sodium acetate buffered (pH 3.6) TBA assay was used. Heating linoleic acid hydroperoxide with 50 microM ferric iron or under nitrogen nearly doubled color production compared to heating it with no added iron or under air. The lipid antioxidant butylated hydroxytoluene inhibited color production from fatty acid hydroperoxides. When tissue fractions, including liver and lung microsomes and lung whole membranes, were heated in the assay, color production was greater under air than under nitrogen and was much greater under oxygen. When liver microsomes from carbon tetrachloride-exposed rats were used, color was increased only when oxygen was present in the heating atmosphere. The results with tissue fractions appear to demonstrate autoxidation during color development rather than the presence of preformed hydroperoxides. Finally, it was found that color production from membrane fractions was dependent on the vitamin E content of the membranes. It appears that autoxidation during heating should be limited by heating under nitrogen and not by adding antioxidants, which inhibit color production from hydroperoxides. As the vitamin E effect demonstrates, antioxidant status must be considered, since a change in color production could result from a change in antioxidant content without the accumulation of lipid hydroperoxides.  相似文献   

13.
Short term exposure of Vallisneria americana to elevated salinity was found to induce a stress response that could be quantified by a series of metabolic assays measuring oxidative stress, photosynthetic efficiency, and dark adapted respiration. Plant specimens exposed to elevated salinity for 24 h displayed signs of oxidative damage represented by the accumulation of reactive oxygen species (ROS) and lipid hydroperoxides in blade tissue (noted at salinities of 10 and 15, respectively). Respiratory demand nearly doubled (140 nanomoles O2 consumed min−1 g−1) when plants were placed in a salinity of 15 for 24 h versus control specimens maintained at 0. After 1 week of exposure a significant increase in respiration and lipid hydroperoxide content was detected in plants incubated at or above a salinity of 13. In addition, effective quantum yield () dropped significantly compared to plants maintained at a salinity below 13. These results highlight the use of cellular stress assays to monitor salt-induced sublethal responses in V. americana.  相似文献   

14.
《Free radical research》2013,47(6):563-576
In an experimental system where both Fe2+ autoxidation and generation of reactive oxygen species is negligible, the effect of FeCl2 and FeCl3 on the peroxidation of phosphatidylcholine (PC) liposomes containing different amounts of lipid hydroperoxides (LOOH) was studied; Fe2+ oxidation, oxygen consumption and oxidation index of the liposomes were measured. No peroxidation was observed at variable FeCl2/FeCl3 ratio when PC liposomes deprived of LOOH by triphenyl-phosphine treatment were utilized. By contrast, LOOH containing liposomes were peroxidized by FeCl2. The FeCl2 concentration at which Fe2+ oxidation was maximal, defined as critical Fe2+ concentration [Fe2+]*, depended on the LOOH concentration and not on the amount of PC liposomes in the assay. The LOOH-dependent lipid peroxidation was stimulated by FeCl3, addition; the oxidized form of the metal increased the average length of radical chains, shifted to higher values the [Fe2+]* and shortened the latent period. The iron chelator KSCN exerted effects opposite to those exerted by FeCl3 addition. The experimental data obtained indicate that the kinetics of LOOH-dependent lipid peroxidation depends on the Fe2+/Fe3+ ratio at each moment during the time course of lipid peroxidation. The results confirm that exogenously added FeCl3 does not affect the LOOH-independent but the LOOH-deendent lipid peroxidation; and suggest that the Feg, endogenously generated exerts a major role in the control of the LOOH-dependent lipid peroxidation.  相似文献   

15.
Ter-butyl hydroperoxide (TBH) induced microsomal lipid peroxidation has been measured by oxygen consumption and malonaldehyde (MDA) formation. It has been found that the singlet oxygen (1O2) trap 2,5 diphenylfuran depressed both oxygen consumption and MDA formation. In contrast, histidine, another 1O2 trap does not effect neither oxygen consumption, nor MDA production. On the other hand, β-carotene, a 1O2 quencher strongly depresses oxygen consumption but slightly affects MDA production. Such results are consistent with the generation of 1O2 as transient by product of peroxidative microsomal lipid decomposition.  相似文献   

16.
In contrast to many studies showing the pro-oxidative nature of amyloid peptide, this work shows that aggregated Aβ42 peptide in varying concentrations (2–20 μM) in cell-free systems inhibits the formation of hydroxyl radicals and H2O2 from a mixture of iron (20 μM FeSO4) and ascorbate (2 mM) as measured by benzoate hydroxylation assay and coumarin carboxylic acid assay. Aggregated Aβ42 in similar concentrations further prevents protein and lipid oxidation in isolated rat brain mitochondria incubated alone or with FeSO4 and ascorbate. Moreover, mitochondria exposed to FeSO4 and ascorbate show enhanced formation of reactive oxygen species and this phenomenon is also abolished by aggregated Aβ42. It is suggested that the antioxidant property of Aβ42 in various systems is mediated by metal chelation and it is nearly as potent as a typical metal chelator, such as diethylenetriaminepentaacetic acid, in preventing oxidative damage. However, aggregated Aβ42 causes mitochondrial functional impairment in the form of membrane depolarization and a loss of phosphorylation capacity without involving reactive oxygen species in the process. Thus, the present results suggest that the amyloid peptide exhibits a protective antioxidant role in biological systems, but also has toxic actions independent of oxidative stress.  相似文献   

17.
Reactive oxygen and nitrogen species produced by cold atmospheric plasma (CAP) are considered to be the most important species for biomedical applications, including cancer treatment. However, it is not known which species exert the greatest biological effects, and the nature of their interactions with tumor cells remains ill-defined. These questions were addressed in the present study by exposing human mesenchymal stromal and LP-1 cells to reactive oxygen and nitrogen species produced by CAP and evaluating cell viability. Superoxide anion (O2 ) and hydrogen peroxide (H2O2) were the two major species present in plasma, but their respective concentrations were not sufficient to cause cell death when used in isolation; however, in the presence of iron, both species enhanced the cell death-inducing effects of plasma. We propose that iron containing proteins in cells catalyze O2 and H2O2 into the highly reactive OH radical that can induce cell death. The results demonstrate how reactive species are transferred to liquid and converted into the OH radical to mediate cytotoxicity and provide mechanistic insight into the molecular mechanisms underlying tumor cell death by plasma treatment.  相似文献   

18.
Catalysis of the formation of reactive oxygen species (RO2S) by low molecular weight complexes of iron has been implicated in several pathological conditions in the retina since photoreceptors and retinal pigment epithelial cells are likely to be especially sensitive to RO2S. Since protective proteins cannot cross the blood-retinal barrier, it is likely that the retina performs its own protective functions by synthesizing proteins that bind iron and nonprotein iron complexes, the major catalysts of RO2S generation. Investigations were carried out to determine whether pigment epithelial cells are themselves sensitive to iron-generated RO2S and whether apo-transferrin and apo-hemopexin, known to be made locally in the retina, can perform a protective function. In 51Cr release assays, the toxicity of exogenous RO2S including hydrogen peroxide or superoxide (generated by xanthine oxidase/hypoxanthine) to human retinal pigment epithelial cells was inhibited by the iron chelators, desferrioxamine and apo-transferrin. Free but not protein-bound ferric iron and heme exacerbated the toxic effect. The toxic effect of heme was abolished by the heme-scavenging, extracellular antioxidant, apo-hemopexin, and also by exogenous bovine serum albumin. In addition, heme toxicity was inhibited by a 3 h preincubation of cells with either heme, apo-hemopexin, or heme-hemopexin 24 h prior to the toxicity assay. It is concluded, first, that toxic effects of iron and heme can be prevented by apo-transferrin or apo-hemopexin and, second, that exposure of RPE cells to free heme or hemopexin sets in motion a series of biochemical events resulting in protection against oxidative stress. It is probable that these include heme oxygenase induction. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Abstract

We have shown that 1,2-diacylglycerol hydroperoxides activate protein kinase C (PKC) as efficiently as does phorbol ester [Takekoshi S, Kambayashi Y, Nagata H, Takagi T, Yamamoto Y, Watanabe K. Activation of protein kinase C by oxidized diacylglycerol. Biochem Biophys Res Commun 1995; 217: 654-660]. 1,2-Diacylglycerol hydroperoxides also stimulate human neutrophils to release superoxide whereas their hydroxides do not [Yamamoto Y, Kambayashi Y, Ito T, Watanabe K, Nakano M. 1,2-Diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 1997; 412: 461-464]. One of the proposed mechanisms for the formation of 1,2-diacylglycerol hydroperoxides is the hydrolysis of phosphatidylcholine hydroperoxides by phospholipase C (PLC). To confirm this hypothesis, we incubated 1-palmitoyl-2-linoleoyl-phosphatidylcholine (PLPC) liposomes containing PLPC hydroperoxides (PLPC-OOH) with Bacillus cereus PLC and found 1-palmitoyl-2-linoleoylglycerol (PLG) and its hydroperoxide (PLG-OOH) were produced. PLC hydrolyzed the two substrates without preference, as the yields of PLG and PLG-OOH were the same even though cholesterol was incorporated into liposomes to increase bilayer integrity. Phospholipid hydroperoxide glutathione peroxidase (PHGPX) reduced PLG-OOH to its hydroxide in the presence of glutathione while the conventional cytosolic glutathione peroxidase did not. These data suggest that PLC hydrolyzes oxidized biomembranes to give 1,2-diacylglycerol hydroperoxides for PKC stimulation but PHGPX may prevent neutrophil stimulation by reducing 1,2-diacylglycerol hydroperoxides to their hydroxides.  相似文献   

20.
The formation of electronically excited states during hydroperoxide metabolism is analysed in terms of recombination reactions involving secondary peroxyl radicals and scission of the O? O bond of peroxides by haemoproteins, mainly myoglobin. Both processes may be sequentially interrelated, for the cleavage of H2O2 by metmyoglobin leads to the formation of a strong oxidizing equivalent with the capability to promote peroxidation of polyunsaturated fatty acids. The decomposition of lipid hydroperoxides by ferryl-hydroxo complexes, as that formed during the oxidation of metmyoglobin by H2O2, is a source of peroxyl radicals, the recombination of which proceeds with elimination of a conjugated triplet carbonyl or singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号