首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resource managers need effective tools to control invasive fish populations. In this study, we tested under-ice carbon dioxide (CO2) injection as a novel piscicide method for non-native Silver Carp (Hypophthalmichthys molitrix), Bighead Carp (Hypophthalmichthys nobilis), Grass Carp (Ctenopharyngodon idella), Common Carp (Cyprinus carpio) and native Bigmouth Buffalo (Ictiobus cyprinellus). Fish were held overwinter in nine outdoor ponds (0.04 ha surface area; 340,000 L volume) treated with no CO2 (control), 43.5–44.0 kg CO2 (low treatment), and 87.5–88.5 kg CO2 (high treatment). Ponds were harvested immediately after ice-out to assess survival and condition. Resulting survival in low (mean = 32%) and high (mean = 5%) CO2-treated ponds was significantly lower than untreated control ponds (mean = 84%). Lethal efficacy varied across species with no Bighead Carp, Silver Carp, or Bigmouth Buffalo surviving the high CO2 treatment. External infections were observed more frequently after CO2 treatments (means = 49–67%) relative to untreated ponds (mean = 2%), suggesting a secondary mechanism for poor survival. This study demonstrates that CO2 can be used as a lethal control for invasive fishes, but effectiveness may vary by species and CO2 concentration.  相似文献   

2.
A direct correlation has been reported between the severity of symptoms associated with rhinovirus infection and the concentration of interleukin-8 in nasal secretions. The purpose of these studies was to examine the mechanism of rhinovirus-induced IL-8 elaboration. Rhinovirus infection induced oxidative stress in Beas-2b cells and the concentration of H2O2 in supernatant media from rhinovirus challenged cells was 12.5 ± 6.1 μM 1 h after challenge compared to 0.7 ± 0.3 μM in supernatant from control cells. N-acetyl cysteine inhibited RV-induced NF-κB activation and IL-8 elaboration. IL-8 concentrations were 36 ± 2 pg/ml and 10 ± 1 pg/ml 6 h after virus challenge in untreated and NAC-treated (30 mM NAC) cells, respectively. Despite the effects of NAC on IL-8 elaboration and NF-κB activation, RV stimulated increases in supernatant H2O2 were not altered by NAC. These data suggest that RV stimulation of IL-8 in respiratory epithelium is mediated through production of oxidative species and the subsequent activation of NF-κB.  相似文献   

3.

The impact of in-situ CO2 nano-bubbles generation on the freezing properties of soft serve, milk, and apple juice was investigated. Carbonated (0, 1000, and 2000 ppm) liquid foods contained in a tube were submerged and cooled for 90 min in a pre-set ethylene glycol bath (−15 °C). Before the enclosed liquid reached 0 °C, the vibration was discharged through ultrasound in the bath to create nano-bubbles within the carbonated food samples, and the changes in temperature for 90 min of each food were recorded as a freezing curve. The time for onset of nucleation of control soft serve mix was halved in samples with 2000-ppm CO2 due to the presence of nano-bubbles. Likewise, the nucleation time for milk with and without nano-bubbles at the same CO2 concentration of 2000 ppm was 7.9 ± 0.1 and 2.8 ± 0.8 min, respectively. The generation of CO2 nano-bubbles from 2000-ppm CO2 level in 10 oBx apple juice displayed −9.3 ± 0.3 °C nucleation temperature while the control one had −11.7 ± 0.9 °C.

  相似文献   

4.
Abstract

The objective of this study was to investigate the effect of increasing CO2 concentration on the growth and the capability of Tetraselmis chui. in removal of nitrate, ammonium and phosphate from shrimp pond wastewater (SPWW). The factorial experimental design was used with the treatment of SPWW percentage in culture medium, namely: 100% SPWW, 75% SPWW + 25% Sea Water (SW) and 75% SW + 25% SPWW coupled with three CO2 concentration treatments: 390?ppm, 550?ppm and 1000?ppm using CO2 system. Growth of T. chui. for lengh of cultivation period tended to be higher at treatments of 390?ppm CO2 and 100% SPWW, however there was a declining growth over period of cultivation for both treatments. The growth rate of T. chui was higher for all percentage of SPWW treatments in culture medium at 390?ppm CO2 concentration compared to other percentage of SPWW treatments and CO2 concentration treatments. There was a decreasing of growth rate with increasing CO2 concentration at 100% SPWW and 75% SPWW + 25% SW in culture medium. Nitrogen removal efficiency and removal rate by T. chui. were strongly affected by CO2 concentration. However, there was no significant effect of increasing CO2 concentration to removal efficiency and rate of PO4 by T. chui.  相似文献   

5.
Capsule: Carbon dioxide (CO2) concentrations in the burrows of Sand Martins Riparia riparia increase with depth but have no detectable impact on fledging success.

Aims: To investigate whether burrow depth and CO2 concentrations influence reproductive success in Sand Martins.

Methods: We monitored two Sand Martin colonies along the River Lune, Lancashire, UK, to investigate the effect of burrow depth on reproductive success. We also measured CO2 levels in a sample of burrows to test whether burrow depth predicts CO2 concentration, and to test for a relationship between CO2 concentration and breeding success.

Results: Burrow depth was significantly correlated with fledging success, but the correlation was positive in first broods and negative in second broods. The highest CO2 concentration recorded was 73?650?ppm and the mean concentration across burrows was 31?757?ppm. However, while CO2 concentrations were positively correlated with burrow depth after controlling for the number and age of nestlings, they were not correlated with reproductive success.

Conclusion: There are reproductive costs associated with deeper burrows in second broods, but these could not be attributed to CO2 concentrations despite the exceptionally high levels recorded. This study highlights the need for further investigation into gas exchange and the potential impacts of, or adaptations to, CO2 accumulation in avian burrows.  相似文献   

6.
The ongoing work on global warming resulting from green house gases (GHGs) has led to explore the possibility of bacterial strains which can fix carbon dioxide (CO2) and can generate value-added products. The present work is an effort in this direction and has carried out an exhaustive batch experiments for the fixation of CO2 using B. Cereus SM1 isolated from sewage treatment plant (STP). The work has incorporated 5-day batch run for gaseous phase inlet CO2 concentration of 13 ± 1 % (%v/v). 84.6 (±5.76) % of CO2 removal was obtained in the gaseous phase at mentioned CO2 concentration (%v/v). Energetic requirement for CO2 fixation was assessed by varying Fe[II] ion concentration (0–200 ppm) on the per-day basis. The cell lysate obtained from CO2 fixation studies (Fe[II] ion = 100 ppm) was analyzed using Fourier transformation infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC–MS). This analysis confirmed the presence of fatty acids and hydrocarbon as valuable products. The hydrocarbons were found in the range of C11–C22 which is equivalent to light oil. The obtained fatty acids were found in the range of C11–C19. The possibility of fatty acid conversion to biodiesel was explored by carrying out the transesterification reaction. The yield of biodiesel was obtained as 86.5 (±0.048) % under the transesterification reaction conditions. Results of this research work can provide the valuable information in the implementation of biomitigation of CO2 at real scenario.  相似文献   

7.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

8.
Abstract

Effect of modified atmospheres (MAs) containing CO2 at 20, 40, 60 and 80% or containing N2 at 97 and 98% on the mortality of Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) sixth instar larvae was studied to determine the LT values at 30?°C. The respiration rates of untreated and treated larvae with 60% CO2 and/or 98% N2 at LT50 were measured using Q-Box RP1LP low range respirometry package. Total protein and triglycerides of treated and untreated larvae were assayed. Complete larval mortality was recorded after 72 and 144?h of treatment with 60% CO2 and 98% N2, respectively. Calculated LT50 values were 39.3 at 60% CO2 and 87.5?h at 98% N2 MAs. Respiration quotient (RQ) in the light of consumed O2 and produced CO2 of untreated larvae was 1.0 while it was 0.85 at 60% CO2 and 0.72 at 98% N2. Duration time necessary for produced CO2 curve to reach the maximum point (2000?ppm) was significantly shorter at untreated larvae (27.64?min) in comparison with that recorded at CO2 (35.48?min) which also significantly less than that obtained at N2 (98.54?min). At all treatments, total protein was decreased while triglycerides were increased in comparison with control.  相似文献   

9.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

10.
Two pennate diatoms, Amphora coffeaeformis and Nitzschia ovalis, were used to evaluate potential responses to the future CO2 and temperature increases with respect to cell-specific growth rate, elemental composition, size, population growth rate, and carrying capacity. Diatoms were subjected to four different treatments over a 2 week period (approximately 4 generations): a control (28°C and present-day CO2, ~400 ppm), high CO2 (28°C with high CO2, ~750 ppm), high temperature (31°C and present-day CO2, ~400 ppm), and greenhouse-effect treatment (31°C with high CO2, ~750 ppm). The results indicated that both the cell-specific growth rates and the carrying capacity of A. coffeaeformis decreased at the higher temperature treatment, whereas N. ovalis did not differ among all treatments. No significant difference was found in either species’ elemental cell composition, but higher C:N and C:P ratios were observed for A. coffeaeformis and N. ovalis, respectively, in high CO2 and greenhouse-effect treatments. Smaller cell sizes were observed for both species under the greenhouse-effect treatment, a phenomenon that could alter benthic food webs in the future.  相似文献   

11.
《Endocrine practice》2012,18(6):826-833
ObjectiveTo evaluate the effect of salsalate as an antiinflammatory agent on insulin resistance and glycemic control in persons with prediabetes.MethodsIn this double-blind, placebo-controlled clinical trial, 66 persons who had prediabetes on the basis of the American Diabetes Association criteria were enrolled. They were randomly assigned to receive salsalate (3 g daily) or placebo for 12 weeks. Fasting plasma glucose (FPG) and insulin, glucose 2 hours after oral administration of 75 g of glucose, hemoglobin A1c, lipid profile, homeo stasis model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment of beta-cell function were determined before and after treatment.ResultsSalsalate treatment reduced the FPG level from 5.86 ± 0.07 mmol/L to 5.20 ± 0.11 mmol/L and HOMA-IR from 4.2 ± 0.9 to 3.8 ± 0.3 (P = .01 for both changes). Homeostasis model assessment of beta-cell func tion increased in the salsalate-treatment group from 139.8 ± 11.0 to 189.4 ± 24.6 (P = .01). At the end of the study, FPG, HOMA-IR, and insulin levels were significantly different between salsalate and placebo groups (5.20 ± 0.11 mmol/L versus 5.53 ± 0.10 mmol/L, 3.8 ± 0.3 versus 4.4 ± 0.9, and 16.1 ± 1.9 μIU/mL versus 18.2 ± 2 μIU/mL, respectively; P < .05 for all). There were no persistent complications after salsalate therapy.ConclusionTreatment with salsalate can reduce insu lin resistance and the FPG level in subjects with predia betes. Determination of the long-term safety and efficacy of the use of salsalate necessitates further investigation. (Endocr Pract. 2012;18:826-833)  相似文献   

12.
In order to achieve recognition as environmentally friendly production, flue gases should be used as a CO2 source for growing the microalgae Chlorella sorokiniana when used for hydrogen production. Flue gases from a waste incinerator and from a silicomanganese smelter were used. Before testing the flue gases, the algae were grown in a laboratory at 0.04, 1.3, 5.9, and 11.0 % (v/v) pure CO2 gas mixed with fresh air. After 5 days of growth, the dry biomass per liter algal culture reached its maximum at 6.1 % CO2. A second experiment was conducted in the laboratory at 6.2 % CO2 at photon flux densities (PFD) of 100, 230, and 320 μmol photons m?2 s?1. After 4 days of growth, increasing the PFD increased the biomass production by 67 and 108 % at the two highest PFD levels, as compared with the lowest PFD. A bioreactor system containing nine daylight-exposed tubes and nine artificial light-exposed tubes was installed on the roof of the waste incinerator. The effect of undiluted flue gas (10.7 % CO2, 35.8 ppm NO x , and 38.6 ppm SO2), flue gas diluted with fresh air to give 4.2 % CO2 concentration, and 5.0 % pure CO2 gas was studied in daylight (21.4?±?9.6 mol photons m?2 day?1 PAR, day length 12.0 h) and at 135 μmol photons m?2 s?1 artificial light given 24 h day?1 (11.7?±?0.0 mol photons m?2 day?1 PAR). After 4 days’ growth, the biomass production was the same in the two flue gas concentrations and the 5 % pure CO2 gas control. The biomass production was also the same in daylight and artificial light, which meant that, in artificial light, the light use efficiency was about twice that of daylight. The starch concentration of the algae was unaffected by the light level and CO2 concentration in the laboratory experiments (2.5–4.0 % of the dry weight). The flue gas concentration had no effect on starch concentration, while the starch concentration increased from about 1.5 % to about 6.0 % when the light source changed from artificial light to daylight. The flue gas from the silicomanganese smelter was characterized by a high CO2 concentration (about 17 % v/v), low oxygen concentration (about 4 %), about 100 ppm NO x , and 1 ppm SO2. The biomass production using flue gas significantly increased as compared with about 5 % pure CO2 gas, which was similar to the biomass produced at a CO2 concentration of 10–20 % mixed with N2. Thus, the enhanced biomass production seemed to be related to the low oxygen concentration rather than to the very high CO2 concentration.  相似文献   

13.
Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m?2 day?1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m?2 day?1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m?2 day?1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.  相似文献   

14.
We examined the effects of combined pioglitazone (peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) agonist) and exenatide (GLP‐1 receptor agonist) therapy on hepatic fat content and plasma adiponectin levels in patients with type 2 diabetes (T2DM). Twenty‐one T2DM patients (age = 52 ± 3 years, BMI = 32.0 ± 1.5, hemoglobin A1c (HbA1c) = 8.2 ± 0.4%) on diet and/or metformin received additional treatment with either pioglitazone 45 mg/day for 12 months (n = 10) or combined therapy with pioglitazone (45 mg/day) and exenatide (10 µg subcutaneously twice daily) for 12 months (n = 11). At baseline, hepatic fat content and plasma adiponectin levels were similar between the two treatment groups. Pioglitazone reduced fasting plasma glucose (FPG) (P < 0.05), fasting free fatty acid (FFA) (P < 0.05), and HbA1c (Δ = 1.0%, P < 0.01), while increasing plasma adiponectin concentration by 86% (P < 0.05). Hepatic fat (magnetic resonance spectroscopy (MRS)) was significantly reduced following pioglitazone treatment (11.0 ± 3.1 to 6.5 ± 1.9%, P < 0.05). Plasma triglyceride concentration decreased by 14% (P < 0.05) and body weight increased significantly (Δ = 3.7 kg). Combined pioglitazone and exenatide therapy was associated with a significantly greater increase in plasma adiponectin (Δ = 193%) and a significantly greater decrease in hepatic fat (12.1 ± 1.7 to 4.7 ± 1.3%) and plasma triglyceride (38%) vs. pioglitazone therapy despite the lack of a significant change in body weight (Δ = 0.2 kg). Hepatic injury biomarkers aspartate aminotransferase and alanine aminotransferase (ALT) were significantly decreased by both treatments; however, the reduction in ALT was significantly greater following combined pioglitazone and exenatide therapy. We conclude that combined in patients with T2DM, pioglitazone and exenatide therapy is associated with a greater reduction in hepatic fat content as compared to the addition of pioglitazone therapy (Δ = 61% vs. 41%, P < 0.05).  相似文献   

15.
The increasing level CO2 may altered host plant physiology and hence affect the foraging behavior of herbivore insects and predator. Hence, the aim of this study was provides evidence that host plants grown at different levels of CO2 can alter the choice behavior of aphid, Sipha flava and their natural enemies, Cycloneda sanguinea and Diomus seminulus. The plant used was Pennisetum purpureum, cultivar Cameron Piracicaba growing in greenhouse (mean value of CO2?=?440 ppm), climatic chamber with constant value of CO2?=?500 ppm and climatic chamber with fluctuating CO2 (mean value?=?368 ppm). A glass Y-shape olfactometer was used to verify the insects responses towards elephant grass plants cultivated under different conditions. The aphids were statistically more attracted by plants grown with constant CO2 level (500 ppm) than by plants grown with fluctuating CO2 level or plants grown in greenhouse. There was no difference in S. flava preference to non-infested versus infested plants by conspecifics. The predator C. sanguinea did not show difference between plants grown with constant CO2 level and infested or not with S. flava. However, the predator D. seminulus showed higher preference to plants grown with constant CO2 level and infested with S. flava. This study showed that the response of S. flava and its predators were affected by plants grown under different levels of CO2.  相似文献   

16.
Cuet  P.  Pierret  C.  Cordier  E.  Atkinson  M. J. 《Coral reefs (Online)》2011,30(1):37-43

Phosphate uptake (P-uptake) into coral reef communities has been hypothesized to be mass-transfer limited. One method of demonstrating mass-transfer limitation of P-uptake is to show dependence of P-uptake on water velocity. Water velocity across reef flats varies with tides and swell; thus, we measured P-uptake over the entire reef flat on eight different days, representing a range in water velocities. P-uptake was calculated from changes in P concentration of the water column. Changes in P concentration were measured by water sampling at six sites along a 300-m cross-reef transect while simultaneously measuring water velocity. To smooth the variability in phosphate concentrations, peristaltic pumps were used to get time-integrated water samples for 4–6 h at each site. Water velocities were measured in the middle of the transect using an acoustic Doppler current profiler and were averaged to match the time-integrated water sampling. Depth-averaged cross-reef water velocities were 0.031 ± 0.013 m s−1 (mean ± SD), while the root-mean-square water velocities, accounting for oscillatory flow, averaged 3.3 times higher, 0.101 ± 0.021 m s−1 (mean ± SD). Phosphate decreased along all transects. The first-order rate constant for P-uptake (S) was 8.5 ± 2.4 m d−1 (mean ± SD) and increased linearly with root-mean-square water velocity. The Stanton number derived from oscillatory flow, the ratio of the first-order rate constant for P-uptake to the root-mean-square water velocity (S/U rms), was (9.4 ± 1.2) × 10−4 (mean ± SD). P-uptake ranged from 0.2 to 1.1 mmol P m−2 d−1, demonstrating that P-uptake is variable on short time scales and is directly related to P concentration and water velocity.

  相似文献   

17.
It is well recognized that improving nitrogen use efficiency (NUE) can directly reduce nitrous oxide (N2O) emission in cropland and indirectly reduce carbon dioxide (CO2) release from nitrogen (N) production, while such a reduction has not been well quantified in China. We estimated the greenhouse gas (GHG; N2O and CO2) mitigation potential (MP) from Chinese cropland and its regional distribution by quantifying NUE and determining the amount of over‐applied synthetic N under various scenarios of NUE. We estimated that synthetic NUE in the late 1990s was 31±11% (mean±SD) for rice, 33±13% for wheat, and 31±11% for maize cultivation. Improving NUE to 50% could cut 6.6 Tg of synthetic N use per year, accounting for 41% of the total used. As a result of this reduction, the direct N2O emission from croplands together with CO2 emission from the industrial production and transport of synthetic N could be reduced by 39%, equivalent to 60 Tg CO2 yr?1. The MP was probably underestimated because organic N supply was not taken into account when estimating NUE. It was concluded that improving N management can greatly reduce GHG (N2O and CO2) emissions in Chinese croplands, and mitigation in the Jiangsu, Henan, Shandong, Sichuan, Hubei, Anhui, and Hebei provinces should be given priority.  相似文献   

18.
The ex situ conservation of biodiversity is an essential tool for environmental protection interventions. Germination studies of seeds that belong to endangered species are essential for ex situ conservation strategies. In this study, we investigate the germination responses of three high-altitude endemic and vulnerable species (Leontopodium nivale, Pinguicula fiorii and Soldanella minima subsp. samnitica). Specifically we identified potential dormancy mechanisms by investigating the responses of germination percentage and rate to different concentrations of gibberellic acid (GA3), by performing a general linear model. L. nivale reached a germination percentage of 98.0 ± 2.0% (mean ± SE) under control conditions (20°C; 12/12 photoperiod; no GA3 addition). P. fiorii showed the highest germination percentage (78.0 ± 2.0%) in the treatment with GA3 500 ppm. S. minima subsp. samnitica did not show sensitivity to GA3 but responded positively to cold stratification (6 month at 5°C) with a germination percentage of 90 ± 6%. This study made it possible to acquire important information on the germination process of threatened and rare endemic taxa.  相似文献   

19.
The modification of myeloperoxidase and lactoperoxidase with 2-(O-methoxypolethylene glycol)-4, 6-dichloro-s-triazine, an activated polyethylene glycol (PEG1), was investigated. The modification caused a shift of the Soret band in the light absorption spectrum, from 430 nm to 418 nm in the case of myeloperoxidase (native ferric form), and from 412 nm to 406 nm in the case of lactoperoxidase (native ferric form). PEG1-modified myeloperoxidase and PEG1-modified lactoperoxidase both failed to bind with antiserum to the respective native enzyme, but both retained respectively 4·5±0·3 per cent (mean±SE, n=5) and 0·6±0·2 per cent (mean±SE, n=5) of the activities of peroxidation of the hydrogen donor o-methoxyphenol in comparison with the native enzyme, and 1·5±0·2 per cent (mean±SE, n=5) and 1·2±0·2 per cent (mean±SE, n=5) of the activities of destruction of fuchsin basic in the presence of hydrogen peroxide and a halide, bromide. The pH dependencies of the peroxidating activities were almost the same as those of the corresponding native enzymes, but both the optimal pHs of the reactions involving the destruction of fuchsin basic were shifted by approximately 1·0 pH unit toward neutral pH compared with the respective native enzymes. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Experiments were conducted to understand the direct and indirect effects of temperature and elevated CO2 (eCO2), on tritrophic interactions of cowpea (Vigna unguiculata subsp. unguiculata L.), legume aphid Aphis craccivora Koch and coccinellid predator Menochilus sexmaculatus Fab. Reduction of the leaf nitrogen (6%), amino acid (6%) and protein (7%) of cowpea foliage with increased carbon (13%) and C:N ratio (21%) at eCO2 over aCO2 indicated the dilution of biochemical constituents at first trophic level. Shortened development time, DT and increment of reproductive rate, RR at eCO2 over ambient CO2(aCO2)was significant with increase in temperature from 20 to 35?°C. Reduction of the mean degree day, DD requirement of both nymphal (75.79?±?15.163) and adult stages (157.15?±?67.04) at eCO2 over aCO2 and same was reflected in the summation DD for both the stages at eCO2 (232.96?±?80.32)and aCO2 (247.07?±?64.77) across six temperatures. The ‘rm’ and ‘Ro’ increased gradually with increase in temperature followed the non-linear trend and reached maximum values at 27?°C with shortened ‘T’ across 20 to 35?°C temperatures at eCO2 indicating the significant variation of growth and development at the second trophic level. Decreased grub duration (23%) with increased predation capacity (19%) of M. sexmaculatus on A. craccivora at eCO2 over ambient was noted, indicating the incidence of A. craccivora is likely to be higher with increased predation in the future climate change scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号