首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An overview of the biochemical photophysiology of tropical, reef-building corals is presented with a discussion on the biosynthetic relationship between natural UV-absorbing sunscreens and certain antioxidant functions in marine organisms. Our studies reveal that marine organisms, including 'UV-extremophilic' bacteria, are a rich source of novel antioxidants having potential for the development of commercial and biomedical applications. Novel sunscreening agents derived from tropical marine organisms of the Great Barrier Reef are in development. New marine-derived antioxidants are being isolated for testing as chemopreventatives in a variety of oxidatively degenerative diseases.  相似文献   

2.
Diatoms from surface sediments of the northern part of Lake Tanganyika   总被引:3,自引:3,他引:0  
227 Diatom taxa were observed in the surface sediments of the northern part of Lake Tanganyika, including 1 new to science: Amphora tanganyikae. The diatom community of these sediments is mainly composed of benthic organisms while planktonic diatoms are rather rare. Many brackish-water and a few marine organisms were observed. Cosmopolitan organisms (77.1%) dominate the diatom flora but tropical, tropical African and African taxa are also well represented (22.9%)Deceased.Deceased.  相似文献   

3.
Abstract

Combinatorial and high throughput experimental methods are being applied to the design and development of novel polymers and coatings used in a number of application areas. Methods have been developed for polymer synthesis and screening and for the development of polymer thin film and coating libraries and the screening of these libraries for key properties such as surface energy and modulus. Combinatorial and high throughput methods enable the efficient exploration of a large number of compositional variables over a wide range. In the development of coatings for use in the marine environment, the key challenge is in the development of screening methods that can predict good performance. A number of assays are under development that will permit the rapid screening of the interaction of coatings with representative marine organisms.  相似文献   

4.
One of the most promising alternative technologies to antifouling paints based on heavy metals is the development of coatings whose active ingredients are compounds naturally occurring in marine organisms. This approach is based on the problem of epibiosis faced by all marine organisms and the fact that a great number of them cope with it successfully. The present study investigated the antifouling activity of a series of extracts and secondary metabolites from the epibiont-free Mediterranean sponges Ircinia oros, I. spinosula, Cacospongia scalaris, Dysidea sp., and Hippospongia communis. Antifouling efficacy was evaluated by the settlement inhibition of laboratory-reared Balanus amphitrite Darwin cyprids. The most promising activity was exhibited by the metabolites 2-[24-acetoxy]-octaprenyl-1-4-hydroquinone (8a), dihydrofurospongin II (10), and the alcoholic extract of Dysidea sp.  相似文献   

5.

The ban on the use of TBT-based antifouling paints for boats under 25 m in length has lead to a search for new non-toxic antifoulants. One of the most promising alternative technologies to heavy metal based antifouling paint is the development of antifouling coatings whose active ingredients are naturally occurring compounds from marine organisms. This is based on the principle that marine organisms also face the problem of the presence of epibionts on their own surfaces. In this study, the antifouling activity of a series of aqueous, ethanolic and dichloromethane extracts from thirty algae from the North East Atlantic coast was investigated. The extracts were tested in laboratory assays against species representative of two major groups of fouling organisms, viz . macroalgae and microalgae. The activity of several extracts was comparable to that of heavy metals and biocides (such as TBTO and CuSO 4 ) currently used in antifouling paints and their lack of toxicity with respect to the larvae of oysters and sea urchins suggests a potential for novel active ingredients.  相似文献   

6.
7.
Abstract

The study of the palm leaf base has consequences that relate to overall development of the crown and the function of the crown as a whole, especially in relation to wind resistance. Palms provide a supreme example of the phenomenon of “giantism”, which is exhibited by many groups of tropical organisms. The distinctive features of the leaf sheath are related to this process, but palms exhibit such a range of adult sizes and occupy such a diversity of habitats that there is considerable scope for comparative study.  相似文献   

8.
Summary I assayed phenolic and tannin concentrations in a number of species of temperate and tropical brown algae of the genera Sargassum and Turbinaria. Tropical species in both genera contained consistently low levels of phenolics and tannins (species means ranged between 0 and 1.6% [measured as % dry weight of the thallus]). Levels of phenolics in temperate species of Sargassum were variable and consistently much higher than in tropical species (species means ranged between 3 and 12% by dry weight). This pattern of latitudinal variation in phenolic levels in Sargassum conflicts with previous predictions for latitudinal variation in the chemical defenses of marine organisms. The low levels of phenolics present in the tropical species that I analyzed may also explain recent results (Hay 1984; Lewis 1985) demonstrating that tropical Sargassum and Turbinaria are often preferentially consumed by herbivorous fishes and echinoids.  相似文献   

9.
Thermal tolerance shapes organisms' physiological performance and limits their biogeographic ranges. Tropical terrestrial organisms are thought to live very near their upper thermal tolerance limits, and such small thermal safety factors put them at risk from global warming. However, little is known about the thermal tolerances of tropical marine invertebrates, how they vary across different life stages, and how these limits relate to environmental conditions. We tested the tolerance to acute heat stress of five life stages of the tropical sea urchin Lytechinus variegatus collected in the Bahía Almirante, Bocas del Toro, Panama. We also investigated the impact of chronic heat stress on larval development. Fertilization, cleavage, morula development, and 4‐armed larvae tolerated 2‐h exposures to elevated temperatures between 28–32°C. Average critical temperatures (LT50) were lower for initiation of cleavage (33.5°C) and development to morula (32.5°C) than they were for fertilization (34.4°C) or for 4‐armed larvae (34.1°C). LT50 was even higher (34.8°C) for adults exposed to similar acute thermal stress, suggesting that thermal limits measured for adults may not be directly applied to the whole life history. During chronic exposure, larvae had significantly lower survival and reduced growth when reared at temperatures above 30.5°C and did not survive chronic exposures at or above 32.3°C. Environmental monitoring at and near our collection site shows that L. variegatus may already experience temperatures at which larval growth and survival are reduced during the warmest months of the year. A published local climate model further suggests that such damaging warm temperatures will be reached throughout the Bahía Almirante by 2084. Our results highlight that tropical marine invertebrates likely have small thermal safety factors during some stages in their life cycles, and that shallow‐water populations are at particular risk of near future warming.  相似文献   

10.
Abstract

The role of surface topography as a defence against fouling in tropical sea stars was investigated. The sea stars Linckia laevigata, Fromia indica, Cryptasterina pentagona and Archaster typicus are not fouled and have paxillae (modified ossicles with a median vertical pillar) on their aboral surfaces, which varied in diameter, height and distance depending on species and position on the aboral surface, providing unique and complex surface microtopographies for each species. The surfaces of the sea stars L. laevigata, F. indica and A. typicus were moderately wettable, with their mean seawater contact angles, calculated from captive bubble measurements, being 60.1°, 70.3° and 57.3°, respectively. The seawater contact angle of C. pentagona could not be measured. To evaluate the effectiveness of the surface microtopographies in deterring the settlement of fouling organisms, field experiments with resin replicas of the four sea star species were conducted at three sites around Townsville, Australia, for 8 weeks during the dry and wet seasons. The fouling community and total fouling cover did not differ significantly between replicas of L. laevigata, F. indica, C. pentagona, A. typicus and control surfaces at any site during the dry season. Significant differences between fouling communities on the replicas of the sea stars and control surfaces were detected at two sites during the wet season. However, these differences were transitory, and the total fouling cover did not differ significantly between replicas of sea stars and control surfaces at two of the three sites. In contrast to recent literature on the effects of biofouling control by natural surfaces in the marine environment, the surface microtopographies of tropical sea stars alone were not effective in deterring the settlement and growth of fouling organisms.  相似文献   

11.
Abstract

Glycosylation is considered to be an important reaction for the chemical modification of compounds with useful biological activities. Glycoside hydrolases are biotechnologically attractive enzymes which can be used in synthetic reactions for assembling glycosidic linkages with absolute stereoselectivity at an anomeric centre. Most of these enzymes are commercially available but there is great interest in the search for new biocatalysts with original catalytic characteristics. The marine environment has shown to be a very interesting source for new glycosyl hydrolases for both hydrolytic and synthetic aspects. In particular, Aplysia fasciata a marine herbivorous mollusc has been shown to be a potent producer of a library of glycoside hydrolases applied to the synthesis of glycosidic bonds. The impressive assortment of glycosidases in marine organisms clearly indicates that the potential biodiversity of these enzymes is still largely unexplored and that potential applications of biocatalysts from the sea will increase in the near future.  相似文献   

12.
Here, we evaluate the so‐called Thorson's rule, which posits that direct‐development and larger eggs are favored toward the poles in marine organisms and whose validity been the subject of considerable debate in the literature, combining an expanded phenotypic dataset encompassing 60 species of benthic octopuses with a new molecular phylogeny. Phylogenetic reconstruction shows two clades: clade 1 including species of the families Eledonidae, Megaleledonidae, Bathypolypodidae, and Enteroctopodidae, and clade 2 including species of Octopodidae. Egg size, development mode, and all environmental variables exhibited phylogenetic signal, partly due to differences between the two clades: whereas most species in clade 1 inhabit cold and deep waters, exhibit large eggs and hatchling with holobenthic development, species from clade 2 inhabit tropical‐temperate and shallow waters, evolved small eggs, and generally exhibit merobenthic development. Phylogenetic regressions show that egg size exhibits a conspicuous latitudinal cline, and that both egg size and development mode vary with water temperature. Additionally, analyses suggest that egg size is constrained by body size in lineages with holobenthic development. Taken together, results suggest that the variation in egg size and development mode across benthic octopuses is adaptive and associated with water temperature, supporting Thorson's rule in these organisms.  相似文献   

13.
Alcoholic extract of the marine algae Chlorella vulgaris was examined for its free radical scavenging effect with reference to naphthalene-induced lipid peroxidation in serum, liver, and kidney of rats. Initially, upon naphthalene intoxication (435 mg/kg body weight, intraperitoneally), the lipid peroxidation activity increased significantly (P < 0.001), and in contrast, the enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymic antioxidants (glutathione, ascorbic acid, and α-tocopherol) levels decreased remarkably. When the naphthalene stressed rats were treated with Chlorella vulgaris extract (70 mg/kg body weight, orally), the lipid peroxidation activity reduced significantly (P < 0.001) and the activities of both the enzymic and non-enzymic antioxidants increased reaching near control values. The minimum concentration (70 mg/l) of the extract that exhibited maximum (85%) free radical scavenging activity was chosen for the experimental study. The present results suggest that Chlorella vulgaris extract exerts its chemo-preventive effect by modulating the antioxidants status and lipid peroxidation during naphthalene intoxication.  相似文献   

14.
Abstract

The toxicity, mobility, bioavailability and bioaccumulation of metals are dependent on the particular physico-chemical form in which the element occurs in the environment. Special attention has been paid to metals which are essential for the proper functioning of organisms if present in appropriate amounts but are toxic if in excess (i.e. Se, Cr), and also to non-essential elements (i.e. Hg, Pb, Cd, Sn and As). To assess the potential hazard to the health of marine organisms, qualitative and quantitative analyses of metal species accumulating along the food chain needs to be carried out. This paper reviews the available information on the speciation of trace elements in the food chain in marine ecosystems and the analytical tools used for acquiring reliable information in this field. Advantages and limitations of commonly used techniques indicate that all metal species in different samples need diverse extraction, separation and detection conditions. Although not recommending which procedure is the most suitable to determine a given compound, speciation analysis has the potential to be a powerful tool for the identification of trace element species in biological samples.  相似文献   

15.
This paper reviews original and literature data on the cryoresistance of the cells of marine organisms. The technology for the cryopreservation of these objects includes the selection of freezing conditions and the use, in addition to traditional cryoprotectants, of combinations of exogenous lipids, antioxidants, and disaccharide trehalose as a membrane stabilizing agent. We propose an approach for the preservation of marine invertebrate cells. The approach is based on the use of biologically active substances obtained from the tissues of marine organisms. Our results demonstrated the synergistic activity of these components of cryoprotective mixtures, and, at the same time, the specificity of antioxidant effects. An analysis of the factors that determine the choice of cryoprotectors was performed for various cell types. The development of the cryopreservation methods of marine organisms provides an opportunity for their wide application in both developmental biology and in marine biotechnology and serves as an important prerequisite for the cryobank creation.  相似文献   

16.
Marine actinobacteriology is one of the major emerging areas of research in tropics. Marine actinobacteria occur on the sediments and in water and also other biomass (mangrove) and substrates (animal). These organisms are gaining importance not only for their taxonomic and ecological perspectives, but also for their unique metabolites and enzymes. Many earlier studies on these organisms were confined only to the temperate regions. In tropical environment, investigations on them have gained importance only in the last two decades. So far, from the Indian peninsula, 41 species of actinobacteria belonging to 8 genera have been recorded. The genus, Streptomyces of marine origin has been more frequently recorded. Of 9 maritime states of India, only 4 have been extensively covered for the study of marine actinobacteria. Most of the studies conducted pertain to isolation, identification and maintenance of these organisms in different culture media. Further, attention has been focused on studying their antagonistic properties against different pathogens. Their biotechnological potentials are yet to be fully explored.  相似文献   

17.

Ecological problems associated with current antifouling technologies have increased interest in the natural strategies that marine organisms use to keep their surfaces clean and free from fouling. Bacteria isolated from living surfaces in the marine environment have been shown to produce chemicals that are potential antifoulants. Active compounds from the cells and culture supernatant of two bacterial strains, FS‐55 and NudMB50–11, isolated from surface of the seaweed, Fucus serratus, and the nudibranch, Archidoris pseudoargus, respectively, were extracted using solid phase extraction. The extracts were combined with acrylic base paint resin and assayed for antifouling activity by measuring their ability to inhibit the growth of fouling bacteria. These formulations were found to be active against fouling bacteria isolated from marine surfaces. The formulation of antifouling paints that incorporate marine microbial natural products is reported here for the first time. This is a significant advance towards the production of an environmentally friendly antifouling paint that utilises a sustainable supply of natural biodegradable compounds.  相似文献   

18.

Tropical and temperate marine habitats have long been recognised as fundamentally different system, yet comparative studies are rare, particularly for small organisms such as Crustacea. This study investigates the ecological attributes (abundance, biomass and estimated productivity) of benthic Crustacea in selected microhabitats from a tropical and a temperate location, revealing marked differences in the crustacean assemblages. In general, microhabitats from the tropical location (dead coral, the epilithic algal matrix [algal turfs] and sand) supported high abundances of small individuals (mean length = 0.53 mm vs. 0.96 mm in temperate microhabitats), while temperate microhabitats (the brown seaweed Carpophyllum sp., coralline turf and sand) had substantially greater biomasses of crustaceans and higher estimated productivity rates. In both locations, the most important microhabitats for crustaceans (per unit area) were complex structures: tropical dead coral and temperate Carpophyllum sp. It appears that the differences between microhabitats are largely driven by the size and relative abundance of key crustacean groups. Temperate microhabitats have a higher proportion of relatively large Peracarida (Amphipoda and Isopoda), whereas tropical microhabitats are dominated by small detrital- and microalgal-feeding crustaceans (harpacticoid copepods and ostracods). These differences highlight the vulnerability of tropical and temperate systems to the loss of complex benthic structures and their associated crustacean assemblages.

  相似文献   

19.
Summary

A consequence of environmental and human health concerns arising from the use of toxic metals in marine antifouling coatings has been to recognise the need for a nontoxic alternative to fouling control. Recent research has focused on two approaches to this problem: the development of (a) foul-release coatings that work on the principle of either low surface free energy or coating ablation, and (b) coatings that incorporate a compound(s) that is nontoxic, or at least environmentally benign, that will deter fouling. Here we discuss the nature of the fouling problem and a new technology that is emerging to address it. The use of natural marine products and of analogues to these compounds holds considerable promise and is an area of intense research. It is recognized, however, that a melding of the technologies of foul-release and foul-deterrence may be required to develop broad spectrum, nontoxic antifouling coatings. This approach may more closely reflect antifouling strategies adopted by marine organisms that maintain a foul-free surface.  相似文献   

20.

Background  

The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号