首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The diversity of saproxylic bryophyte species in beech forest stands from the wide region of the central Balkans (i.e. Serbia and Montenegro) was studied, and this study is the first of such a type in SE Europe. Comparison of preserved old‐growth and managed forests were made. Bryophyte species diversity is higher in primeval forest stands where the spectra of dead wood in various decaying stages of its dynamics are present. The ecological group of epixylic specialists is predominant among the bryophytes recorded. Threatened bryophyte species occur in old‐growth beech stands. The dead wood as habitat together with some other factors are extremely important for the surviving of epixylic bryophyte; so these species can be used as bioindicator bryophyte species of old‐growth or managed and structured forest ecosystems.  相似文献   

2.
The bryophyte vegetation of upland limestone grassland at Buxton in the southern Pennine Hills (UK) was studied following seven years' continuous simulated climate change treatments. The experimental design involved two temperature regimes (ambient, winter warming by 3°C) in factorial combination with three moisture regimes (normal, summer drought, supplemented summer rainfall) and with five replicate blocks. Percentage cover of the bryophytes was estimated visually using 15 randomly positioned quadrats (30 cm × 30 cm) within each of the 30 3 m × 3 m plots. Significant treatment effects were found but these were relatively modest. Total bryophyte cover and cover of Calliergonella cuspidata and Rhytidiadelphus squarrosus responded negatively to drought, whereas Fissidens dubius increased in the droughted plots. Campyliadelphus chrysophyllus increased with winter warming, while R. squarrosus, Lophocolea bidentata and species richness all decreased. The effects on the total bryophyte flora were further studied by canonical correspondence analysis, which yielded a first axis reflecting the combined effects of the moisture and temperature treatments. However, this analysis and a detrended correspondence analysis of the plot data also revealed that natural factors were more important causes of variation in the grassland community than the simulated climate treatments. It was concluded that dewfall may be an important source of moisture for grassland bryophytes and that this factor may have reduced the impact of the moisture treatments. The absence of some thermophilous species such as Homalothecium lutescens in the plots initially may also have reduced their scope for major vegetational change.  相似文献   

3.
Background and AimsConifers are key components of many temperate and boreal forests and are important for forestry, but species differences in stem growth responses to climate are still poorly understood and may hinder effective management of these forests in a warmer and drier future.MethodsWe studied 19 Northern Hemisphere conifer species planted in a 50-year-old common garden experiment in the Netherlands to (1) assess the effect of temporal dynamics in climate on stem growth, (2) test for a possible positive relationship between the growth potential and climatic growth sensitivity across species, and (3) evaluate the extent to which stem growth is controlled by phylogeny.Key resultsEighty-nine per cent of the species showed a significant reduction in stem growth to summer drought, 37 % responded negatively to spring frost and 32 % responded positively to higher winter temperatures. Species differed largely in their growth sensitivity to climatic variation and showed, for example, a four-fold difference in growth reduction to summer drought. Remarkably, we did not find a positive relationship between productivity and climatic sensitivity, but instead observed that some species combined a low growth sensitivity to summer drought with high growth potential. Both growth sensitivity to climate and growth potential were partly phylogenetically controlled.ConclusionsA warmer and drier future climate is likely to reduce the productivity of most conifer species. We did not find a relationship between growth potential and growth sensitivity to climate; instead, some species combined high growth potential with low sensitivity to summer drought. This may help forest managers to select productive species that are able to cope with a warmer and drier future.  相似文献   

4.
《Journal of bryology》2013,35(3):337-356
Abstract

Field measurements of the elongation of shoots of Hypnum cupressiforme and lsothecium myosuroides reveal considerable variation. Differences in growth rates in the following situations were found to be significant: at different heights on a trunk, on different sides of sloping trunks, on different species of tree and, over a period, on different trees of a single species at a site.

Monthly growth measurements of H. cupressiforme and Platygyrium repens in Wytham Wood, Berkshire, show that H. cupressiforme grows faster, but that the growth patterns of these species are similar. Most of the annual growth for 1970 and 1971 took place during the autumn and winter. Growth between April and August was very slight. The seasonality of the growth of four pleurocarpous mosses at Wychwood, Oxfordshire, was very similar to the species measured at Wytham. Comparison of seasonal growth records with climatic records for stations near Oxford shows a close correlation Qetween growth and wetness. Monthly rainfall minus potential evapotranspiration (Rf–Et) is particularly closely related to monthly shoot growth.

At Roborough, North Devon, growth of H. cupressiforme was measured every 3 months. Considerable growth occurred during autumn and winter. At this site the summers are wetter and this appears to permit an extension of the growing period, considerable growth occurring between May and October.

In 1970 and 1971 summer growth at several localities was compared. Summer growth was again closely related to Rf–Et. The summer growth in wetregions does not seem to be accompanied by a proportionally high winter growth rate. The wetter the climate, the earlier in the year the peak period of bryophyte growth occurs and the more closely the annual pattern of growth correlates with temperature and day length.  相似文献   

5.
Periphyton biomass, nutrient dynamics in the biomass, and species composition were studied in two Florida Everglades sloughs from August 1991 to August 1992. Periphyton biomass on macrophytes was strongly season-dependent. Maximum biomasses, 1180, 161, and 59 g dry mass.m?2 on Eleocharis vivipara, E. cellulosa, and Nymphaea odorata, respectively, occurred in summer and early autumn; winter and spring periphyton biomass was very low (practically not measurable). Periphyton was dominated by blue-green algae (cyanobacteria) during the summer and autumn; diatoms dominated during the winter and spring. Green algae occurred mostly during the summer and autumn, but their growth was sparse and did not contribute significantly to periphyton biomass. Nitrogen-to-phosphorus ratios in the periphyton were very high (59–121:1), suggesting phosphorus limitation of periphyton growth. The periphyton contained large concentrations of calcium (up to 22.3% on dry mass basis) especially in late summer and autumn.  相似文献   

6.
《Journal of bryology》2013,35(2):351-352
Abstract

Data from hemispherical (‘fisheye’) photographs are presented from twenty bryophyte sites, including open grassland and rock outcrops of various slopes and aspects, habitats of mountain species on shaded cliffs and in corries, and wooded habitats of lowland atlantic species. These demonstrate effects of slope and aspect on both instantaneous and total energy income in direct sunshine, especially marked during the winter half of the year. Corrie habitats of northern atlantic species such as Herberta adunca and Mastigophora woodsii were exposed to direct sun only for a limited period in summer, with peak direct irradiance in June (about half that for an unobstructed level site in the examples considered). Wooded habitats of lowland atlantic species received their peak irradiance (both direct and diffuse) immediately before leaf expansion in spring; direct irradiance at this period relative to an unobstructed level site ranged from 0.8 (instantaneous)/0.35 (daily total) (Plagiochila spinulosa, Scapania gracilis: Devon) down to negligible values (Drepanolejeunea hamatifolia, Aphanolejeunea microscopica; ravine sites in N. Wales and Yorkshire).  相似文献   

7.
《Journal of bryology》2013,35(1):32-45
Abstract

We studied 16 streams evenly distributed over the northern and southern slopes of Madeira in order to investigate the riparian bryoflora. Within each stream, three positions (upper, middle and lower reaches) were delimited and within each position two areas were selected. Within each area two plots (each composed of six microplots of 0.2 m2) were sampled, one in the within-stream habitat (submerged all year round), and the other in the stream-border habitat (submerged only in winter). We found that species composition of the riparian bryophytes is affected by the habitat and position in the stream, but not by the main aspect (northern versus southern slope). Concerning species richness, we found that the stream-border community was clearly richer than the within-stream community, upstream plots were richer than plots downstream, and plots on the northern slope of the island were richer than plots on the southern slope. Habitat type was the most significant factor in determining the richness of the threatened species with more species present in the stream-border habitat. Additive partitioning showed that the between-stream component contributed most to total species richness, especially to the richness of the infrequent and threatened species. However, for the common species, the lowest level, i.e. the within-area component, was the most important. Although northern upstream areas are climatically favourable for many bryophyte species due to their higher humidity, the clear effects found may not only be climate-induced, as these areas are also less disturbed and mostly covered by the natural laurel forest. In the southern, downstream parts only a few species were present. Human impacts are largest in the latter situations and probably contributed to the low species richness. As the streams differed considerably in terms of their bryophyte flora, and most of the species were rare, changes in the riparian areas can greatly affect the bryoflora. Therefore, in order to protect the riparian bryophytes as comprehensively as possible, we emphasize the need for careful monitoring of any changes.  相似文献   

8.
The monthly patterns of aboveground biomass allocation were studied in the branches of six Mediterranean sub-shrubs with different leaf phenology. Four of them were seasonally dimorphic species, and the remaining two were a winter deciduous and a cushion plant with photosynthetic stems. By the analysis of these species we aimed to identify different aboveground biomass allocation patterns within seasonally dimorphic species and to understand the role of seasonal dimorphism as a strategy to avoid the main stresses of mediterranean climate: summer drought and winter cold. The biomass allocation to the different living and photosynthetic fractions of 3-year-old branches was studied monthly for a minimum of 13 months per species. Leaf area (LA, mm2) and leaf mass per area (LMA, mg cm−2) measurements were used to characterize the diverse types of leaves of each species. Standing dead and senescent tissues accounted for a great percentage of the branch biomass of seasonally dimorphic species both during summer and winter. Different patterns of photosynthetic biomass allocation were found within the seasonally dimorphic species analysed. These patterns ranged from the moderate photosynthetic biomass oscillation of Salvia lavandulifolia to the almost deciduousness of Lepidium subulatum, and they were achieved by keeping alive, drying out or shedding different types of branches and leaves throughout the year. The formation of stress tolerant leaves and the reduction in the amount of photosynthetic biomass responded both to the occurrence of summer drought and winter cold. These results demonstrate that seasonal dimorphism is a flexible ecological strategy, as it comprises very different leaf phenologies and enables plants to escape both summer drought and winter cold.  相似文献   

9.
The dynamics of marine microbenthos species structure shows clear annual cycle. From late winter till early autumn community changes towards increasing complexity and orderliness. The sharp increase in available energy (light and heat) in the beginning of the winter acts as trigger of these processes. The further development of the community is connected with system fluctuations arising as a result of interactions or organisms between each other and their environment (feeding, competition, predation). In the end of summer these processes are terminated by the state of high species diversity, maximum species coordination, expansion of inhabited zone within the sediments, and the distinct segregation of space and nutrient resources among species (i.e., achievement of ecological complementarity). Decrease in light and temperature causes the reverse process--weakening of organism coordination and significant simplification of the community structure. In general, these changes correspond to the theory of self-organization in nonequilibrium systems (Prigogine, Stengers, 2001). The most important distinction of observed processes from the classical self-organization is their cyclic dynamics, i.e. the annual return of community to its most simple state at the end of winter.  相似文献   

10.
Microbes colonizing a surface often experience colony growth dynamics characterized by an initial phase of spatial clonal expansion followed by collision between neighboring colonies to form potentially genetically heterogeneous boundaries. For species with life cycles consisting of repeated surface colonization and dispersal, these spatially explicit “expansion‐collision dynamics” generate periodic transitions between two distinct selective regimes, “expansion competition” and “boundary competition,” each one favoring a different growth strategy. We hypothesized that this dynamic could promote stable coexistence of expansion‐ and boundary‐competition specialists by generating time‐varying, negative frequency‐dependent selection that insulates both types from extinction. We tested this experimentally in budding yeast by competing an exoenzyme secreting “cooperator” strain (expansion–competition specialists) against nonsecreting “defectors” (boundary–competition specialists). As predicted, we observed cooperator–defector coexistence or cooperator dominance with expansion–collision dynamics, but only defector dominance otherwise. Also as predicted, the steady‐state frequency of cooperators was determined by colonization density (the average initial cell–cell distance) and cost of cooperation. Lattice‐based spatial simulations give good qualitative agreement with experiments, supporting our hypothesis that expansion–collision dynamics with costly public goods production is sufficient to generate stable cooperator–defector coexistence. This mechanism may be important for maintaining public–goods cooperation and conflict in microbial pioneer species living on surfaces.  相似文献   

11.
12.
Capsule: Atlantic Puffins Fratercula arctica from Scottish and Norwegian populations were significantly heavier in winter than when rearing chicks.

Aims: To compare body masses of Atlantic Puffins on their wintering grounds off the Faroe Islands with those of birds rearing chicks at colonies in Scotland and Norway.

Methods: We took standardized measurements of wing length and body mass of Atlantic Puffins during the summer chick-rearing period and on the wintering grounds near the Faroe Islands. These measurements were used to estimate seasonal changes in body mass for the two breeding populations. In three cases data were available for individuals weighed both at the colony and on the wintering grounds.

Results: On average, Atlantic Puffins breeding in Scotland and Norway increased their body mass by 20–30% between the chick-rearing period and winter. The very limited individual level data accorded well with the population level estimates.

Conclusions: Our results provide the first estimates of the order of magnitude in mass change between two key life history stages in this species. They indicate that gains in body mass between chick-rearing and winter are at least double the decline in mass previously recorded between incubation and chick-rearing. Given the Atlantic Puffin’s deteriorating conservation status, improved information on seasonal changes in body condition should help determine the underlying causes of die-offs in major wreck incidents such as those reported in recent years.  相似文献   

13.
For elusive mammals like bats, colonization of new areas and colony formation are poorly understood, as is their relationship with the genetic structure of populations. Understanding dispersal and group formation behaviors is critical not only for a better comprehension of mammalian social dynamics, but also for guiding conservation efforts of rare and endangered species. Using nuclear and mitochondrial markers, we studied patterns of genetic diversity and differentiation among and within breeding colonies of giant noctule bats (Nyctalus lasiopterus), their relation to a new colony still in formation, and the impact of this ongoing process on the regionwide genetic makeup. Nuclear differentiation among colonies was relatively low and mostly nonsignificant. Mitochondrial variation followed this pattern, contrasting with findings for other temperate bat species. Our results suggest that this may indicate a recent population expansion. On average, female giant noctules were not more closely related to other colony members than to foreign individuals. This was also true for members of the newly forming colony and those of another, older group sampled shortly after its formation, suggesting that contrary to findings for other temperate bats, giant noctule colonies are not founded by relatives. However, mother–daughter pairs were found in the same populations more often than expected under random dispersal. Given this indication of philopatry, the lack of mitochondrial differentiation among most colonies in the region is probably due to the combination of a recent population expansion and group formation events.  相似文献   

14.
Biomass, P concentration, P amount and chlorophyll in three floating and three rooted macrophytes growing in wetlands of the Middle Paraná River floodplain measured in winter and summer were compared. Macrophytes were sampled three times in summer and twice in winter, in the period 2002/2004. Although Pistia stratiotes was the species with the highest P concentration in leaves and roots, Typha domingensis, Eichhornia crassipes and Pontederia cordata were the most efficient species in P retention in natural wetlands because of their higher biomass. Total P amount in rooted species did not show seasonal variations. However, T. domingensis accumulated a greater P amount in its aerial part in summer, whereas in winter it did so in its below-ground parts, indicating an important P dynamic regarding translocation within the plant. In summer, floating species were able to accumulate great quantities of P in a short period due to their high growth rate. In order to optimize and maintain the efficiency of constructed wetlands for P removal throughout the year, a selection of floating and rooted species should be used.  相似文献   

15.
Questions: We asked several linked questions about phenology and precipitation relationships at local, landscape, and regional spatial scales within individual seasons, between seasons, and between year temporal scales. (1) How do winter and summer phenological patterns vary in response to total seasonal rainfall? (2) How are phenological rates affected by the previous season rainfall? (3) How does phenological variability differ at landscape and regional spatial scales and at season and inter‐annual temporal scales? Location: Southern Arizona, USA. Methods: We compared satellite‐derived phenological variation between 38 distinct 625‐km2 landscapes distributed in the northern Sonoran Desert region from 2000 to 2007. Regression analyses were used to identify relationships between landscape phenology dynamics in response to precipitation variability across multiple spatial and temporal scales. Results: While both summer and winter seasons show increases of peak greenness and peak growth with more precipitation, the timing of peak growth was advanced with more precipitation in winter, while the timing of peak greenness was advanced with more precipitation in summer. Surprisingly, summer maximum growth was negatively affected by winter precipitation. The spatial variations between summer and winter phenology were similar in magnitude and response. Larger‐scale spatial and temporal variation showed strong differences in precipitation patterns; however the magnitudes of phenological spatial variability in these two seasons were similar. Conclusions: Vegetation patterns were clearly coupled to precipitation variability, with distinct responses at alternative spatial and temporal scales. Disaggregating vegetation into phenological variation, spanning value, timing, and integrated components revealed substantial complexity in precipitation‐phenological relationships.  相似文献   

16.
Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, providing an alternative source of energy. We studied the dynamics of photosynthetic pigment concentrations and biomass of endoliths in the skeleton of the encrusting coral Oculina patagonica throughout a bleaching event. During repeated summer bleaching events these endolithic algae receive increased photosynthetically active radiation, increase markedly in biomass, and produce increasing amounts of photoassimilates, which are translocated to the coral. Chlorophyll concentrations and biomass of endoliths were 4.6 +/- 1.57 and 1570 +/- 427 microg cm(-2) respectively, in skeletons of relatively healthy colonies (0-40% bleaching) but up to 14.8 +/- 2.5 and 4036 +/- 764 microg cm(-2) endolith chlorophyll and biomass respectively, in skeletons of bleached colonies (greater than 40% bleaching). The translocation dynamics of (14)C-labelled photoassimilates from the endoliths to bleached coral tissue showed significantly higher 14C activity of the endoliths harboured within the skeletons of bleached corals than that of the endoliths in non-bleached corals. This alternative source of energy may be vital for the survivorship of O. patagonica, allowing gradual recruitment of zooxanthellae and subsequent recovery during the following winter.  相似文献   

17.
《Journal of bryology》2013,35(2):239-242
Abstract

Six bryophyte species were investigated: Plagiochila spinulosa, Hylocomium splendens, Scorpiurium circinatum, Tortula ruraliformis, Rhacomitrium aquaticum and Andreaea rothii. Of these, all except A. rothii showed clear evidence of seasonal variation in desiccation tolerance, as measured by net assimilation following 24 h remoistening.

(2) In general these species showed low desiccation tolerance in autumn (October) and winter (January) and increased tolerance in spring and summer. Hylocomium splendens was a partial exception in showing relatively high tolerance in January and little change from then until July.

(3) On the whole, the seasonal pattern of desiccation response accords well with what might be expected from conditions in the habitats of the plants. The results are briefly discussed in relation to distribution of rainfall and some microenvironmental factors, and compared with some data from the literature.  相似文献   

18.
Predator–prey interactions presumably play major roles in shaping the composition and dynamics of microbial communities. However, little is understood about the population biology of such interactions or how predation-related parameters vary or correlate across prey environments. Myxococcus xanthus is a motile soil bacterium that feeds on a broad range of other soil microbes that vary greatly in the degree to which they support M. xanthus growth. In order to decompose predator–prey interactions at the population level, we quantified five predation-related parameters during M. xanthus growth on nine phylogenetically diverse bacterial prey species. The horizontal expansion rate of swarming predator colonies fueled by prey lawns served as our measure of overall predatory performance, as it incorporates both the searching (motility) and handling (killing and consumption of prey) components of predation. Four other parameters—predator population growth rate, maximum predator yield, maximum prey kill, and overall rate of prey death—were measured from homogeneously mixed predator–prey lawns from which predator populations were not allowed to expand horizontally by swarming motility. All prey species fueled predator population growth. For some prey, predator-specific prey death was detected contemporaneously with predator population growth, whereas killing of other prey species was detected only after cessation of predator growth. All four of the alternative parameters were found to correlate significantly with predator swarm expansion rate to varying degrees, suggesting causal interrelationships among these diverse predation measures. More broadly, our results highlight the importance of examining multiple parameters for thoroughly understanding the population biology of microbial predation.  相似文献   

19.
Capsule Long-distance migrant birds show less favourable trends than sedentary/short-distance species.

Aims To use breeding bird surveys to contrast population trends amongst common species according to their migration pattern.

Methods Changes in abundance of 62 Danish breeding sedentary, short-distance (Europe/North Africa) or long-distance (trans-Saharan) migrants were described by fitting log linear regression models to point-count census data gathered during 1976–2005.

Results Trans-Saharan migrants declined by 1.3% per annum during this period, while short-distance migrants and sedentary species increased by 1.4% and 1.0% per annum, respectively. There were no significant decadal declines amongst species using different summer breeding habitats, except for wetlands, and there was no consistent variation in trends associated with wintering regions or habitats or diet.

Conclusions More information is urgently needed on diet, feeding ecology, habitat requirements, winter distribution and intra-African movements of the commoner European summer visitors to identify causes of the declines and highlight when in the annual cycle detrimental effects occur. Studies linking individuals on their breeding, staging and wintering grounds are especially needed. Danish trends resemble those from elsewhere in Europe, confirming that restoration to favourable conservation status requires inter-continental action to meet European and global targets to reduce or halt biodiversity loss.  相似文献   

20.
With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5‐hr daylight to “northern” summer conditions of 22‐hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号