首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultraviolet-absorbing compounds (UVACs) were analyzed in 90 herbarium samples of the liverwort Jungermannia exsertifolia subsp. cordifolia collected throughout Spain in the period 1913–2006, in order to evaluate their usefulness in UV radiation biomonitoring. This was assessed, for the first time in bryophytes, differentiating the soluble (mainly vacuolar) and insoluble (cell wall-bound) UVACs (respectively, SUVACs and IUVACs), which may represent different mechanisms to cope with UV radiation. The bulk levels of SUVACs and IUVACs, and the concentrations of seven individual compounds (five SUVACs and two IUVACs) were analyzed, and several environmental variables of the sampling points were obtained: longitude, latitude, altitude, ozone column, and modelled UV levels.Diverse positive relationships of UVAC variables with UV radiation levels were identified in both the temporal and spatial scales. The soluble compound p-coumaroylmalic acid showed significantly higher concentrations in the years after the onset of stratospheric ozone degradation (around 1975) with respect to the previous years. The bulk level and the concentrations of three individual SUVACs were higher in the Spanish samples analyzed in the present study than in the northern European samples analyzed in a previous study in which IUVACs were not considered. The bulk level of IUVACs was the biological variable best spatially correlated with the UV exposure of the samples and with important factors determining it, such as altitude and latitude. Furthermore, the bulk level of IUVACs was the biological variable selected by a stepwise multiple linear regression analysis to reconstruct the past levels of UV-B radiation. The reconstructed UV-B did not show a clear trend in the period 1913–2006, which was coincident with other climatic and biological UV reconstructions. Both SUVACs and IUVACs were significant loading factors differentiating summer and autumn samples in the Principal Components Analysis conducted using both UVACs and the environmental variables, but again the bulk level of IUVACs was the main loading factor differentiating the samples collected from the highest and most UV-exposed localities (Sierra Nevada). In general, these findings suggest that UVACs were stimulated by increased UV levels in time or space, and that IUVACs would be better UV protectants than SUVACs, probably due to their more efficient screening capacity.Overall, UVACs of J. exsertifolia subsp. cordifolia were good UV biomarkers, and their location in the soluble or cell wall-bound fractions determined their usefulness in the different aspects of UV biomonitoring, including the assessment of the UV-B increase associated to anthropogenic ozone degradation.  相似文献   

2.
We studied the diel responses of the liverwort Jungermannia exsertifolia subsp. cordifolia to radiation changes under laboratory conditions. The samples were exposed to three radiation regimes: P (only PAR), PA (PAR + UV-A), and PAB (PAR + UV-A + UV-B). The day was divided in four periods: darkness, a first low-PAR period, the high-PAR plus UV period, and a second low-PAR period. After 15 days of culture, we measured photosynthetic pigments, chlorophyll fluorescence and UV-absorbing compounds in the four periods of the day on two consecutive days. With respect to UV-absorbing compounds, we analyzed their global amount (as the bulk UV absorbance of methanolic extracts) and the concentration of seven hydroxycinnamic acid derivatives, both in the soluble (mainly vacuolar) and insoluble (cell wall-bound) fractions of the plant extracts. PAB samples increased the bulk UV absorbance of the soluble and insoluble fractions, and the concentrations of p-coumaroylmalic acid in the soluble fraction and p-coumaric acid in the cell wall. Most of these variables showed significant diel changes and responded within a few hours to radiation changes (more strongly to UV-B), increasing at the end of the period of high-PAR plus UV. Fv/Fm, ΦPSII, NPQ and the components of the xanthophyll cycle showed significant and quick diel changes in response to high PAR, UV-A and UV-B radiation, indicating dynamic photoinhibition and protection of PSII from excess radiation through the xanthophyll cycle. Thus, the liverwort showed a dynamic protection and acclimation capacity to the irradiance level and spectral characteristics of the radiation received.  相似文献   

3.
We examined, under laboratory conditions, the influence of temperature (2 °C vs. 10 °C) on the physiological responses of two aquatic bryophytes from a mountain stream to artificially enhanced UV-B radiation for 82 d. These organisms may be exposed naturally to relatively low temperatures and high levels of UV-B radiation, and this combination is believed to increase the adverse effects of UV-B radiation. In the moss Fontinalis antipyretica, UV-B-treated samples showed severe physiological damages, including significant decreases in chlorophyll (Chl) and carotenoid (Car) contents, Chl a/b and Chl/phaeopigment ratios, Chl a fluorescence parameters Fv/Fm and PS2, electron transport rate (ETRmax), and growth. In the liverwort Jungermannia cordifolia, UV-B radiation hardly caused any physiological change except for growth reduction. Thus, this liverwort seemed to be more tolerant to UV-B radiation than the moss under the specific experimental conditions used, maybe partly due to the accumulation of UV-B absorbing compounds. The influence of temperature on the effects of UV-B radiation depended on the species: the higher the UV-B tolerance, the lower the influence of temperature. Also, different physiological variables showed varied responses to this influence. Particularly, the lower temperature used in our study enhanced the adverse effects of UV-B radiation on important physiological variables such as Fv/Fm, growth, and Chl/phaeopigment ratios in the UV-B-sensitive F. antipyretica, but not in the more UV-B-tolerant J. cordifolia. Thus, the adverse effects of cold and UV-B radiation were apparently additive in the moss, but this additiveness was lacking in the liverwort. The Principal Components Analyses (PCA) conducted for both species with the physiological data obtained after 36 and 82 d of culture confirmed the above results. Under natural conditions, the relatively high water temperatures in summer might facilitate the acclimation of aquatic bryophytes from mountain streams to high levels of UV-B radiation. This may be relevant to predict the consequences of concomitant global warming and increasing UV-B radiation.  相似文献   

4.
Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280–330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h. Received: 13 December 2000/Accepted: 19 January 2001  相似文献   

5.
Abstract

UV-B radiation (280–320 nm) as an environmental stress has damaging effect on plants and its overexposure can potentially interfere with growth and development. The effect of thiourea (TU) on UV-B stress tolerance of 10-day-old Brassica juncea seedlings subjected to supplementary UV-B for 5 days was investigated. An increase in the UV-B absorbing compounds anthocyanin, flavonoids and phenolic compounds was observed in UV-B + TU treated seedlings as compared to that of control. The enhanced synthesis of UV-B screening compounds resulted in lesser damage to chlorophyll and also gain in fresh weight and dry weight in UV-B + TU as compared to UV-B alone treatment. The enzymatic activities of guaiacol peroxidase (GPX) and superoxide dismutase (SOD) also increased in UV-B + TU. The expression profiling of phenylalanine ammonia lyase (pal) and chalcone synthase (chs) indicated an upregulation under UV-B + TU treatment, compared to that of control, suggesting that TU treatment ensured an early and efficient induction of flavonoid biosynthetic pathway. The results indicate that TU helps in ameliorating the damaging effects of UV-B stress by efficiently maintaining the antioxidant status and attenuating the penetration of the UV-B.  相似文献   

6.
Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These ‘clip-off’ phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.  相似文献   

7.
Ten strains of the genus Lactococcus were examined for their ability to remove bisphenol A [2, 2-bis(4-hydroxyphenyl)propane; BPA], which is known as an endocrine disrupter. Nine strains of the lactococci tested could remove BPA from media during growth, although the removal ratio was below 9%. When BPA was incubated with lyophilized cells of lactococci for 1 h, the concentration of BPA in the media was decreased by 9–62%. Especially, the highest removal ratio of BPA was observed for Lactococcus lactis subsp. lactis 712. The lactococci could adsorb BPA but not degrade it, because the lactococci maintained the ability to remove BPA from the medium after autoclaving. When the lyophilized cells of L. lactis subsp. lactis 712 were also incubated with six analogues of BPA, they effectively adsorbed hydrophobic compounds such as 2, 2′-diphenylpropane and bisphenol A dimethylether. The BPA-adsorbing ability of lactococci could be due to the hydrophobic binding effect. The removal ratio of BPA by L. lactis subsp. lactis 712 was increased after treatment with sodium dodecyl sulfate and decreased after digestion with trypsin. These results suggest that the hydrophobic proteins on cell surface may be involved in the BPA-adsorbing ability of lactococci.  相似文献   

8.
We report the effect of UV-B radiation (0.8 ± 0.1 mW cm−2) and UV-B radiation supplemented with low-intensity PAR (∼80 μmol photons m−2 s−1) on the photosynthesis, photosynthetic pigments, phosphoglycolipids, oxidative damage, enzymatic antioxidants, and UV-absorbing compounds in Phormidium tenue, a marine cyanobacterium. UV-B radiation resulted in a decline in photosynthesis and photosynthetic pigments leading to lower biomass. P. tenue synthesized UV-absorbing compounds like mycosporine-like amino acids (MAAs) and scytonemin in response to UV-B radiation. Quantity of MAAs and scytonemin was higher when UV-B was supplemented with low-level PAR. UV-B treatment also resulted in quantitative changes in phosphoglycolipids of the membrane. The UV-B treatment resulted in a slight increase in the level of peroxidation of cell membrane and very little increase in the activity of superoxide dismutase (SOD). Results indicate that UV-B affected photosynthesis and that the main protective system was the synthesis of MAAs and scytonemin-like compounds rather than antioxidant enzymes such as SOD.  相似文献   

9.
The highest enzymatic extraction of covalent linked chlorogenic (36.1%) and caffeic (CA) (33%) acids from coffee pulp (CP) was achieved by solid‐state fermentation with a mixture of three enzymatic extracts produced by Aspergillus tamarii, Rhizomucor pusillus, and Trametes sp. Enzyme extracts were produced in a practical inexpensive way. Synergistic effects on the extraction yield were observed when more than one enzyme extract was used. In addition, biotransformation of chlorogenic acid (ChA) by Aspergillus niger C23308 was studied. Equimolar transformation of ChA into CA and quinic acids (QA) was observed during the first 36 h in submerged culture. Subsequently, after 36 h, equimolar transformation of CA into protocatechuic acid was observed; this pathway is being reported for the first time for A. niger. QA was used as a carbon source by A. niger C23308. This study presents the potential of using CP to produce enzymes and compounds such as ChA with biological activities. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 337–345, 2013  相似文献   

10.
11.
UV-B irradiation reduced the levels of omega-3 fatty acid, eicosapentaenoic acid (EPA, 20:53) and docosahexaenoic acid (DHA, 22:63), in microalgae; the degree of reduction varied with species.Chaetoceros calcitrans andSkeletonema costatum were high UV-B tolerant species, followed byPhaeodactylum tricornutum, Chroomonas salina, Pavlova lutheri, andThalassiosira pseudonana.Isochrysis galbana (T.ISO) andProrocentrum micans were UV- B sensitive. Cells in logarithmic phase were most sensitive to UV- B irradiation. Nitrate-, phosphate-, or sulphate-starved cells were more UV-B sensitive than non-starved cells grown in a complete basal medium. A relatively short exposure to high UV-B was more damaging than a longer exposure to lower irradiance. Visible light intensity levels had a profound impact on the sensitivity of microalgal cultures to UV-B, with high levels decreasing UV-B dependent damage. Addition of polyamines (putrescine, spermidine or spermine) or an amino acid (cysteine) to the culture medium minimized the reduction of omega-3 fatty acid content in microalgae caused by UV-B irradiation.Author for correspondence  相似文献   

12.
Primary cell walls of grasses and cereals contain arabinoxylans with esterified ferulate side chains, which are proposed to cross‐link the polysaccharides during maturation by undergoing oxidative coupling. However, the mechanisms and control of arabinoxylan cross‐linking in vivo are unclear. Non‐lignifying maize (Zea mays L.) cell cultures were incubated with l‐ [1‐3H]arabinose or (E)‐[U‐14C]cinnamate (radiolabelling the pentosyl and feruloyl groups of endogenous arabinoxylans, respectively), or with exogenous feruloyl‐[3H]arabinoxylans. The cross‐linking rate of soluble extracellular arabinoxylans, monitored on Sepharose CL‐2B, peaked suddenly and transiently, typically at ~9 days after subculture. This peak was not associated with appreciable changes in peroxidase activity, and was probably governed by fluctuations in H2O2 and/or inhibitors. De‐esterified arabinoxylans failed to cross‐link, supporting a role for the feruloyl ester groups. The cross‐links were stable in vivo. Some of them also withstood mild alkaline conditions, indicating that they were not (only) based on ester bonds; however, most were cleaved by 6 m NaOH, which is a property of p‐hydroxybenzyl–sugar ether bonds. Cross‐linking of [14C]feruloyl‐arabinoxylans also occurred in vitro, in the presence of endogenous peroxidases plus exogenous H2O2. During cross‐linking, the feruloyl groups were oxidized, as shown by ultraviolet spectra and thin‐layer chromatography. Esterified diferulates were minor oxidation products; major products were: (i) esterified oligoferulates, released by treatment with mild alkali; and (ii) phenolic components attached to polysaccharides via relatively alkali‐stable (ether‐like) bonds. Thus, feruloyl esters participate in polysaccharide cross‐linking, but mainly by oligomerization rather than by dimerization. We propose that, after the oxidative coupling, strong p‐hydroxybenzyl–polysaccharide ether bonds are formed via quinone‐methide intermediates.  相似文献   

13.
Samartsev  A. A.  Astapovich  N. I.  Novik  G. I. 《Microbiology》2000,69(6):655-658
Bifidobacterium adolescentis 94-BIM was found to produce cell-wall-bound proteolytic enzymes active at acidic, neutral, and alkaline pH values. The solubilization of proteinases with 0.5% Triton X-100 substantially improved the yield of the enzymes. The most active accumulation of cell-bound proteinases was observed in the third hour of cultivation at rates of 156.7, 179.5, and 111.1 U/(mg h), measured at pH 2.5, 7.0, and 9.0, respectively. It is suggested that the cell-wall-bound proteinases of B. adolescentis 94-BIM are the precursors of the enzymes secreted into the medium.  相似文献   

14.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

15.
Rozema  J.  Noordijk  A.J.  Broekman  R.A.  van Beem  A.  Meijkamp  B.M.  de Bakker  N.V.J.  van de Staaij  J.W.M.  Stroetenga  M.  Bohncke  S.J.P.  Konert  M.  Kars  S.  Peat  H.  Smith  R.I.L.  Convey  P. 《Plant Ecology》2001,154(1-2):9-26

The morphology, size and characteristics of the pollen of the plant species Antarctic hairgrass (Deschampsia antarctica, Poaceae) and Antarctic pearlwort (Colobanthus quitensis, Caryophyllaceae) are described by scanning electron microscopy and light microscopy. Based on the number of pores the pollen of Colobanthus quitensis is classified as periporate or polypantorate, while that of Deschampsia antarctica is monoporate.

Pollen of Vicia faba plants, exposed to enhanced UV-B (10.6 kJ m?2 day?1 UV-BBE) in a greenhouse, showed an increased content of UV-B absorbing compounds. There was also an increase of UV-B absorbing compounds in response to exposure to UV-A. By sequential chemical extraction three `compartments' of UV-B absorbance of pollen can be distinguished: a cytoplasmic fraction consisting of, e.g., flavonoids (acid-methanol extractable), a wall-bound fraction, consisting of, e.g., ferulic acid (NaOH extractable) and aromatic groups in the bioresistant polymer sporopollenin possibly consisting of, e.g., para-coumaric acid monomers (fraction remaining after acetolysis). The sporopollenin fraction in the pollen of Helleborus foetidus showed considerable UV-B absorbance (280–320 nm). There is evidence that enhanced solar UV-B induces increased UV-B absorbance (of sporopollenin) in pollen and spores of mosses, which may be preserved in the fossil record. As there are no instrumental records of solar UV-B in the Antarctic before 1970 and no instrumental records of stratospheric ozone over the Antarctic before 1957, the use of UV-B absorbing polyphenolics in pollen (and spores) as bio-indicator, or proxy of solar UV-B, may allow reconstruction of pre-ozone hole and subrecent UV-B and stratospheric ozone levels. Pollen and spores from herbarium specimens and from frozen moss banks (about 5000–10?000 years old) in the Antarctic may, therefore, represent a valuable archive of historical UV-B levels.

  相似文献   

16.
Barley (Hordeum vulgare L.) was grown with UV-B (280–320 nm) at levels simulating 25 nr 5% ozone depletion on the date of the summer solstice al 40°N latitude, with UV-A (320–400 nm), or with no supplemental irradiation. In plant growth chambers providing 300 μmol m?2 s?1 photosynthetically active radiation (PAR). UV-B-grown leaves elongated more slowly than controls but reached the same final length 1 day later. Leal specific fresh weight (mass leaf area?1) was significantly increased by UV-B after the 7th day of growth. IV-B did not significantly affect leaf area, fresh weight, dry weight, total chlorophylls, total carotenoids or photosynthetic quantum efficiency. CO2 assimilation was decreased by UV-B only at internal CO2 levels above 250 μl l?1. By the 8th day of growth, UV-B increased flavonoid (saponarin and lutonarin) accumulation in both the lower epidermis and the mesophyll: about 40% of the saponarin and 20% of the lutonarin were in the lower epidermis under all experimental conditions. Glasshouse conditions proved too variable for reproducible determination of growth and photosynthesis but were reliable for determining developmental changes in flavonoid (saponarin and lutonarin) accumulation and provided up to 800 μmol m?2 s?1 PAR. In the glasshouse UV-B-grown leaves had more flavonoids than controls al all stages from 5 to 30 days after planting: ca 509 more saponarin and 100% more lutonarin. Levels of soluble (vacuolar) ferulic acid esters were similar under all conditions on day 5. and on day 20 or later, but were significantly higher in UV-B-grown plants on days 10 and 15. UV-B decreased insoluble (cell-wall-bound) ferulic acid esters on a whole leaf basis but significantly increased this fraction in the lower epidermis. UV-A had no significant effects on growth, photosynthesis or ferulic acid, but it slightly increased flavonoid accumulation. The results are discussed in terms of secondary phenolics as a tissue-specific, developmentally regulated adaptive response to UV-B.  相似文献   

17.
Rubia cordifolia L. is widely used in Asia and its antihepatoma effect has been proved by in vitro and in vivo experiments. However, there are few studies on its specific mechanism. In the present study, the network pharmacology method was used to construct the component/target/pathway molecular regulatory network for the antihepatoma effect of Rubia cordifolia L. to explore the effective components of Rubia cordifolia L. and its potential mechanism. The chemical components of Rubia cordifolia L. were identified through literature and databases, and the components were evaluated and screened by drug likeness and pharmacokinetic characteristics (ADMET). The targets of active components were predicted according to the reverse pharmacophore matching model. The hepatic carcinoma-related genes were found in databases, and antihepatoma-related gene targets were selected through comparison. The functions of target genes and related pathways were analyzed and screened using the Database for Annotation, Visualization and Integrated Discovery, and the component/target/pathways network of antihepatoma effect of Rubia cordifolia L. was constructed using Cytoscape software. Finally, 16 active compounds were screened from Rubia cordifolia L., and 39 gene targets, including AKT1, mitogen-activated protein kinase 1, and epidermal growth factor receptor, were involved. Rubia cordifolia L. also affected the hepatitis B, phosphoinositide-3-kinase-protein kinase B, and mitogen-activated protein kinase signaling pathways. Many direct-acting tumor-related signaling pathways and indirect-acting hepatitis pathways inhibit the generation of liver cancer. The present study provided a scientific basis for further elucidating the mechanism of Rubia cordifolia L. against liver cancer.  相似文献   

18.
Barley (Hordeum vulgare L. cv. Alfa) seedlings were treated for 4 d before UV-B irradiation with 0.05 mM proline or 150 mM NaCl. UV-B exposure induced synthesis of yellow coloured compounds with maximum absorbance at 438 nm. The content of these compounds was increased in proline-treated and decreased in NaCl-treated plants. UV-B radiation reduced chlorophyll/carotenoids ratio, oxygen evolution rate and photochemical efficiency of PS 2 as estimated by chlorophyll fluorescence and increased proline accumulation, H2O2 generation and lipid peroxidation. Exogenous proline had no effect on the parameters studied and did not change the response of plants to UV-B radiation. NaCl inhibited photochemical efficiency of PS 2, reduced oxygen evolution and increased H2O2 concentration and lipid peroxidation. The combination of NaCl and proline treatment led to lowering the inhibitory effect of NaCl in non UV-B irradiated seedlings. There was not relationship between the level of UV-B-induced compounds and UV-B tolerance of barley seedlings.  相似文献   

19.
Stratospheric ozone depletion has caused ground-level ultraviolet-B (UV-B) radiation to rise in temperate latitudes of both hemispheres. Because the effects of enhanced UV-B radiation on the nutrition of food consumed by mammalian herbivores are unknown, we measured nutritional and chemical constituents of 18 forages and related changes to in vitro dry matter digestibility. We also measured intake and in vivo digestibility of Pacific willow (Salix lasiandra) and alfalfa (Medicago sativa L.) by blue duikers (Cephalophus monticola). Forages were irradiated for 3 months with ambient (1×) or supplemental (1.6×) UV-B radiation representing a 15% ozone depletion for Pullman, Washington, USA. Enhanced UV-B radiation had minimal and inconsistent effects on the nutritional content, in vitro dry matter digestibility, and protein-binding capacity of forages. However, flavonoid compounds increased in seven of the 13 forbs and woody dicots that were evaluated. Flavonoids were found to decrease only in yarrow (Achillea millefolium). When offered simultaneously, blue duikers preferred 1× and 1.6× UV-B irradiated plants of alfalfa equally, but ate 26% less willow grown under 1.6× UV-B radiation. However, when fed to duikers in separate feeding experiments, total dry matter intake and in vivo digestibility of dry matter, fiber, protein, and apparent energy did not differ between alfalfa and willow grown under 1× and 1.6× UV-B radiation. We conclude that expected increases in UV-B radiation from ozone depletion would have minimal effects on intake and digestion of ruminant herbivores.  相似文献   

20.
 DNA from endomycorrhizal fungi was extracted directly from a weathered soil (alfisol) mixed with sand. Mycorrhizae were established in a greenhouse culture of Glomus clarum with Sudan grass (Sorghum vulgare var. sudanense) host plants. The extraction procedure included enzymatic digestion of cell walls, sodium dodecyl sulfate lysis of cells, polyvinylpolypyrrolidone absorption of organic compounds, and ethanol precipitation of the DNA. DNA in the extracts was amplified by the polymerase chain reaction using primers from the nuclear 17S rRNA sequence that were general to fungi or were specific to endomycorrhizae. Accepted: 17 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号