首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Angiotensin II activates a variety of signaling pathways in vascular smooth muscle cells (VSMCs), including the MAPKs and Akt, both of which are required for hypertrophy. However, little is known about the relationship between these kinases or about the upstream activators of Akt. In this study, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive kinase p38 MAPK and its substrate MAPKAPK-2 mediate Akt activation in VSMCs. In unstimulated VSMCs, Akt and p38 MAPK are constitutively associated and remain so after angiotensin II stimulation. Inhibition of p38 MAPK activity with SB-203580 dose-dependently inhibits Akt phosphorylation on Ser473, but not Thr308. Angiotensin II-induced phosphorylation of MAPKAPK-2 is also attenuated by SB-203580, as well as by inhibitors of ROS. In addition, angiotensin II stimulates the association of MAPKAPK-2 with the Akt-p38 MAPK complex, and an in vitro kinase assay shows that MAPKAPK-2 immunoprecipitates of VSMC lysates phosphorylate recombinant Akt in an angiotensin II-inducible manner. Finally, intracellular delivery of a MAPKAPK-2 peptide inhibitor blocks Akt phosphorylation on Ser473. These results suggest that the p38 MAPK-MAPKAPK-2 pathway mediates Akt activation by angiotensin II in these cells by recruiting active MAPKAPK-2 to a signaling complex that includes both Akt and p38 MAPK. Through this mechanism, p38 MAPK confers ROS sensitivity to Akt and facilitates downstream signaling. These results provide evidence for a novel signaling complex that may help to spatially organize hypertrophy-related, ROS-sensitive signaling in VSMCs. mitogen-activated protein kinase; reactive oxygen species  相似文献   

3.
《Free radical research》2013,47(5):560-571
Abstract

On the basis of recent reports, we propose that impaired neurotrophin signaling (PI3k/Akt), low antioxidant levels, and generation of reactive oxygen species (ROS) conjointly participate in the progressive events responsible for the dopaminergic cell loss in Parkinson's disease (PD). In the present study we tried to target these deficits collectively through multiple neurotrophic factors (NTFs) support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) using human SH-SY5Y neuroblastoma cell line exposed to 6 hydroxydopamine (6OHDA). 6OHDA exposure induced, oxidative stress-mediated apoptotic cell death viz. enhanced ROS generation, diffused cytosolic cytochrome c (cyt c), impaired Bcl-2: Bax levels along with decrease in GSH content. These changes were accompanied by loss in Akt phosphorylation and TH levels in SH-SY5Y cells. OEC CM significantly checked apoptotic cell death by preserving pAkt levels which coincided with enhanced GSH and suppressed oxidative injury. Functional integrity of OEC CM supported cells was evident by maintained tyrosine hydroxylase (TH) expression. Intercepting Akt signaling by specific inhibitor LY294002 blocked the protective effect. Taken together our findings provide important evidence that the key to protective effect of multiple NTF support via OEC CM is enhanced Akt survival signaling which promotes antioxidant defense leading to suppression of oxidative damage.  相似文献   

4.
《Free radical research》2013,47(7):912-919
Abstract

Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

5.
Background Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. Results Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. Conclusion The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation.  相似文献   

6.
Zhu  Xiaojuan  Liu  Shichao  Cao  Zhijiao  Yang  Lei  Lu  Fang  Li  Yulan  Hu  Lili  Bai  Xiaoliang 《Molecular and cellular biochemistry》2021,476(11):3889-3897

Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.

  相似文献   

7.
We developed N,N′-bis(salicylidene)-1,2-phenylenediamine (salophene, 1) as a chelating agent for metal ions such as Mn(II/III), Fe(II/III), Co(II), Ni(II), Cu(II), and Zn(II). The resulting complexes, from which owing to the carrier ligand a selective mode of action is assumed, were tested for antiproliferative effects on the MCF-7 breast cancer cell line. The cytotoxicity in this assay depended on the nature of the transition metal used. Iron complexes in oxidation states +II and +III (3, 4) strongly reduced cell proliferation in a concentration-dependent manner, whereas, e.g., the manganese analogues 5 and 6 were only marginally active. Therefore, the [N,N′-bis(salicylidene)-1,2-phenylenediamine]iron(II/III) complexes 3 and 4 were selected for studies on the mode of action. Both complexes possessed high activity against various tumor cells, for instance, MDA-MB-231 mammary carcinoma cells as well as HT-29 colon carcinoma cells. They were able to generate reactive oxygen species, showed DNA binding, and induced apoptosis. Exchange of 1 by N,N′-bis(salicylidene)-1,2-cyclohexanediamine (saldach, 2) yielding complexes 7 and 8 reduced the in vitro effects drastically. An unequivocal mode of action cannot be deduced from these results, but it seems to be very likely that cell death is caused by interference with more than one intracellular target. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.  相似文献   

9.
BACKGROUNDTo date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.AIMTo investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.METHODSThe cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.RESULTS6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.CONCLUSION6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.  相似文献   

10.
11.
Although Akt is reported to play a role in morphine’s cardioprotection, little is known about the mechanism underlying morphine-induced Akt activation. This study aimed to define the molecular mechanism underlying morphine-induced Akt activation and to determine if the mechanism contributes to the protective effect of morphine on ischemia/reperfusion injury. In cardiac H9c2 cells, morphine increased Akt phosphorylation at Ser473, indicating that morphine upregulates Akt activity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a major regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling, was not involved in the action of morphine on Akt activity. Morphine decreased the activity of PP2A, a major protein Ser/Thr phosphatase, and inhibition of PP2A with okadaic acid (OA) mimicked the effect of morphine on Akt activity. The effects of morphine on PP2A and Akt activities were inhibited by the reactive oxygen species (ROS) scavenger N-(2-mercaptopropionyl)glycine (MPG) and the mitochondrial KATP channel closer 5-hydroxydecanoate (5HD). In support, morphine could produce ROS and this was reversed by 5HD. Finally, the cardioprotective effect of morphine on ischemia–reperfusion injury was mimicked by OA but was suppressed by 5HD or MPG, indicating that protein phosphatases and ROS are involved in morphine’s protection. In conclusion, morphine upregulates Akt activity by inactivating protein Ser/Thr phosphatases via ROS, which may contribute to the cardioprotective effect of morphine.  相似文献   

12.
Feng  Huiqiong  Xi  Fuqiang 《Neurochemical research》2022,47(10):3137-3149

Miltirone is a phenanthrene-quinone derived from Salvia miltiorrhiza Bunge with anti-inflammatory and anti-oxidant effects. Our study aimed to explore the protective effect of miltirone on 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of Parkinson’s disease (PD). PharmMapper database was employed to predict the targets of miltirone. PD-related genes were identified using GeneCards database. The overlapping genes between miltirone and PD were screened out using Venn diagram. KEGG analysis was performed using DAVID and KOBAS databases. Cell viability, reactive oxygen species (ROS) generation, apoptosis, and caspase-3 activity were detected by CCK-8 assay, a ROS assay kit, TUNEL, and caspase-3 activity assay, respectively. Effect of miltirone on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was explored by western blot analysis. A total of 214 targets of miltirone and 372 targets related to PD were attained, including 29 overlapping targets. KEGG analysis demonstrated that the 29 overlapping targets were both significantly enriched in the PI3K/Akt pathway. MPP+ stimulation reduced the cell viability in SH-SY5Y cells and neuronal primary cultures derived from human brain. Miltirone or N-acetylcysteine (NAC) attenuated MPP+-induced reduction in cell viability, ROS production, SOD activity reduction, apoptosis, and increase of caspase-3 activity. Additionally, miltirone recuperated MPP+-induced inactivation of the PI3K/Akt pathway. Moreover, treatment with LY294002, an inhibitor of the PI3K/Akt pathway, reversed the inhibitory effect of miltirone on MPP+-induced ROS generation and apoptosis in SH-SY5Y cells and neuronal primary cultures. In conclusion, miltirone attenuated ROS-dependent apoptosis in MPP+-induced cellular model of PD through activating the PI3K/Akt pathway.

  相似文献   

13.
Reactive Oxygen Species Enhance Insulin Sensitivity   总被引:1,自引:0,他引:1  
Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high-fat-diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the antioxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo.  相似文献   

14.
The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.  相似文献   

15.
《Free radical research》2013,47(8):635-642
Abstract

Oxidative stress plays a significant role in pathophysiology of cataracts and also known to affect the phosphatidylinositol-3-kinase/ protein kinase B (PI3K/Akt) signaling pathway. This well-documented pathway is involved in protecting against apoptosis-inducing insults, including oxidative stress. Melatonin (N-acetyl-5-methoxy-tryptamine), the major secretory product of the pineal gland, was identified as a powerful free radical scavenger and a broad-spectrum antioxidant that defends against various oxidative stress-associated diseases. This study was conducted to determine whether melatonin could prevent hydrogen peroxide (H2O2)-induced oxidative stress in human lens epithelial cells (HLECs) and to elucidate the molecular pathways involved in this protection. HLECs were subjected to various concentrations of H2O2 in the presence or absence of melatonin at different concentrations. Cell viability was monitored by a 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl-tetrazoliumbromide (MTT) assay, and the apoptosis rate and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry using annexin V-FITC and propidium iodide (PI) staining. The expression levels of HO-1, Nrf-2, CAT, and MDA were measured using Western blot analysis. Akt activation was also evaluated by Western blot analysis. The data from our study showed that cells pretreated with melatonin can reduce H2O2-induced intracellular ROS generation and thus protect HLECs from cell apoptosis. Furthermore, we found that melatonin is a potent activator of Akt in HLECs. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against oxidative stress-induced cataracts.  相似文献   

16.
Angiotensin II, a hypertrophic/anti-apoptotic hormone, utilizes reactive oxygen species (ROS) as growth-related signaling molecules in vascular smooth muscle cells (VSMCs). Recently, the cell survival protein kinase Akt/protein kinase B (PKB) was proposed to be involved in protein synthesis. Here we show that angiotensin II causes rapid phosphorylation of Akt/PKB (6- +/- 0.4-fold increase). Exogenous H(2)O(2) (50-200 microM) also stimulates Akt/PKB phosphorylation (maximal 8- +/- 0.2-fold increase), suggesting that Akt/PKB activation is redox-sensitive. Both angiotensin II and H(2)O(2) stimulation of Akt/PKB are abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294002 (2(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), suggesting that PI3-K is an upstream mediator of Akt/PKB activation in VSMCs. Furthermore, diphenylene iodonium, an inhibitor of flavin-containing oxidases, or overexpression of catalase to block angiotensin II-induced intracellular H(2)O(2) production significantly inhibits angiotensin II-induced Akt/PKB phosphorylation, indicating a role for ROS in agonist-induced Akt/PKB activation. In VSMCs infected with dominant-negative Akt/PKB, angiotensin II-stimulated [(3)H]leucine incorporation is attenuated. Thus, our studies indicate that Akt/PKB is part of the remarkable spectrum of angiotensin II signaling pathways and provide insight into the highly organized signaling mechanisms coordinated by ROS, which mediate the hypertrophic response to angiotensin II in VSMCs.  相似文献   

17.
Background:This study evaluates the effect of simultaneous AKT inhibition and cisplatin therapy in changes of Reactive Oxygen Species (ROS) production, apoptosis induction, and cell survival in cisplatin-resistant OVCAR3 cell.Methods:OVCAR3 cancer cells were treated with cisplatin, Ly 294002 (LY), and cisplatin+Ly to investigate the cytotoxicity effect of the mentioned groups via MTT assay. Then, DCFH-DA (2′, 7′-dichlorodihydro fluorescein diacetate) assay kit is used to assess the potential of treated groups in intracellular ROS generation. Protein expression levels of caspase-3, cleaved caspase 3, PI3K, Akt, p-Akt, XIAP, and Survivin are estimated through immunoblotting assay in all three experimental groups.Results:The results showed that all three treated groups, including cisplatin and Ly alone and co-administration of cisplatin+Ly, could reduce the cell vitality of OVCAR3 cancer cells, induced intracellular production of ROS and increased the expression level of activated caspase 3 and Akt protein, whereas down-regulated the phosphorylation of Akt protein. However, the effect of combination therapy was more tangible compared to single therapy and control groups. In contrast, the expression amount of XIAP, Survivin, and PI3K did not show detectable changes in comparison with the control group.Conclusion:The results showed that the AKT inhibition by Ly could sensitize the OVCAR3 cancer cells to the cisplatin and lower the effective dose of cisplatin through hyperactivation of oxidative stress.Key Words: Caspase-3, Cisplatin, Ovarian cancer, PI3K/Akt signaling  相似文献   

18.
Migration behavior of radionuclides should be understood in order to estimate the impact of high-level radioactive waste (HLW) disposal on the environment. Bacteria, one of the major organic sorbents in solid and aquatic environments, can affect the fate of actinides and lanthanides by sorption onto their cell surfaces. In this study, the sorption of the radionuclide Americium (Am(III)) and several metal ions (Eu(III), Cu(II) and Ca(II)) to Pseudomonas fluorescens were measured under various conditions. It was revealed that as pH decreased, the sorption of Eu(III) and Am(III) increased when the metals were at relatively low concentrations but decreased at higher metal concentrations. On the other hand, sorption of Cu(II) followed the opposite trend. In the case of calcium, an increase in calcium ions was observed due to release from the cells. These findings suggest that the sorption mechanisms for low levels of Eu(III) and Am(III) on the cells of Pseudomonas fluorescens are different from those of Cu(II), Ca(II), and high concentrations of Eu(III) (> 10 ? 5 M).  相似文献   

19.
20.

Background

Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS can act both positively and negatively on insulin signaling, but the molecular mechanisms controlling these dual actions of ROS are not fully understood.

Methodology/Principal Findings

Here, we directly treated H4IIEC hepatocytes with hydrogen peroxide (H2O2), a representative membrane-permeable oxidant and the most abundant ROS in cells, to identify the key factors determining whether ROS impair or enhance intracellular insulin signaling. Treatment with high concentrations of H2O2 (25–50 µM) for 3 h reduced insulin-stimulated Akt phosphorylation, and increased the phosphorylation of both JNK and its substrate c-Jun. In contrast, lower concentrations of H2O2 (5–10 µM) enhanced insulin-stimulated phosphorylation of Akt. Moreover, lower concentrations suppressed PTP1B activity, suggesting that JNK and phosphatases such as PTP1B may play roles in determining the thresholds for the diametrical effects of H2O2 on cellular insulin signaling. Pretreatment with antioxidant N-acetyl-L-cysteine (10 mM) canceled the signal-promoting action of low H2O2 (5 µM), and it canceled out further impairment of insulin of insulin signaling induced by high H2O2 (25 µM).

Conclusions/Significance

Our results demonstrate that depending on its concentration, H2O2 can have the positive or negative effect on insulin signal transduction in H4IIEC hepatocytes, suggesting that the concentration of intracellular ROS may be a major factor in determining whether ROS impair or enhance insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号