首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

2.
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H2O2)-induced intracellular ROS, assessed with CM-H2DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H2O2. VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H2O2 treatment. Also, NADPH oxidase activity was provoked by H2O2. VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.  相似文献   

3.
Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of cross talk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain conditions may stimulate NADPH oxidases. This cross talk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production, which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions.  相似文献   

4.
Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization and re-endothelialization in response to tissue ischemia and endothelial injury. It is reported that the circulating EPCs number is decreased during hypertension. However, the detailed mechanism is still unclear. Our previous studies have shown that ClC-3 chloride channel is up-regulated with the development of hypertension. This study aims to test whether ClC-3 participates in EPC apoptosis under the condition of increased oxidative stress in angiotensin II (Ang II)-induced hypertension. The results showed that stimulation with 10?6mol/L Ang II significantly up-regulated the endogenous ClC-3 expression and increased intracellular reactive oxygen species (ROS) generation in EPCs of wild type mice, accompanied by an enhanced NADPH oxidase activity and the expression of gp91phox (NOX-2), a key catalytic subunit of NADPH oxidase. However, these effects of Ang II were significantly reduced in EPCs of ClC-3?/? mice. Compared with control, treatment with Ang II induced EPCs apoptosis in wild type mice, concomitantly with declined Bcl-2/Bax ratio, depressed mitochondrial membrane potential and activation of poly(ADP-ribose) polymerase, which was remarkably prevented by both ClC-3 knockout and NADPH oxidase inhibitor apocynin. In addition, the role of ClC-3 deficiency in protecting EPCs against Ang II-induced oxidative stress and apoptosis was further confirmed in Ang II-infused hypertensive mice in vivo. In conclusion, ClC-3 deficiency inhibited Ang II-induced EPC apoptosis via suppressing ROS generation derived from NADPH oxidase.  相似文献   

5.
Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.  相似文献   

6.
ABSTRACT: BACKGROUND: Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear. RESULTS: We report that the reactive oxygen species (ROS) generator NADPH oxidase mediates an oxidative stress-signaling cascade involved in the increased tyrosine phosphorylation of the NR2A subunit in post-ischemic differentiated SH-SY5Y neuroblastoma cells. Inhibition of NADPH oxidase attenuated the increased tyrosine phosphorylation of the NMDAR NR2A subunit, while inhibition of ROS production from mitochondrial or xanthine oxidase sources failed to dampen the post-ischemic increase in tyrosine phosphorylation of the NR2A subunit. Additionally, inhibition of NADPH oxidase blunted the interaction of activated Src Family Kinases (SFKs) with PSD-95 induced by ischemia/reperfusion. Lastly, inhibition of NADPH oxidase also markedly reduced cell death in post-ischemic SH-SY5Y cells stimulated by NMDA. CONCLUSIONS: These data indicate that NADPH oxidase has a key role in facilitating NMDAR NR2A tyrosine phosphorylation via SFK activation during post-ischemic reperfusion.  相似文献   

7.
The production of reactive oxygen species (ROS) within immune cell phagosomes is critical for antimicrobial activity and for correct antigen processing, and influences signaling pathways that direct host responses to infection and inflammation. Because excess oxidants can cause tissue damage and oxidative stress, phagocytes must precisely control both the location and timing of NADPH oxidase activity. How differential regulation is achieved at phagosomes is not well understood. Recent studies have revealed that the PI(3)P phosphoinositide plays an important role in locally boosting phagosomal NADPH oxidase activity through its binding to the p40phox NADPH oxidase subunit. Furthermore, phox subunit dynamics at phagosomes may regulate the timing of the oxidative burst. Novel elements regulating catalytic core trafficking include Rab27 and SNAP‐23. In addition to trafficking events, the activity of the electrogenic oxidase is also governed by ionic fluxes, which are constrained at phagosomes owing to low intraphagosomal volume and dynamic display of channels, transporters, and pumps. New insights on the interdependence of phagosomal pH and ROS have been recently elucidated, and chloride channels important for microbicidal functions, including CFTR, and CLIC family channels, have been identified. Finally, periphagosomal calcium microdomains and calcium‐dependent S100A8/9 protein recruitment may help fine‐tune spatiotemporal regulation of NADPH oxidase activation for an effective immune response .   相似文献   

8.

Background

Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O2 ), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI.

Methodology/Principal Findings

The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24–96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O2 induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer''s disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI.

Conclusions/Significance

As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.  相似文献   

9.

Aims

Glucose-6-phosphate dehydrogenase (G6PDH) has been reported to be involved in resistance to various environmental stresses. However, the role of G6PDH in aluminum (Al) toxicity remains unclear.

Methods

Physiological and biochemical methods together with histochemical analysis were used to investigate the participation of G6PDH in Al-induced inhibition of root growth.

Results

Exposure to high Al concentration caused a significant increase in the activities of total and cytosolic G6PDH in roots of soybean. Al-induced inhibition of root growth and oxidative stress were alleviated by a G6PDH inhibitor. Reactive oxygen species (ROS) accumulation in Al-treated root apexes could be abolished by a NADPH oxidase inhibitor. Furthermore, treatment with a G6PDH inhibitor reduced NADPH content and NADPH oxidase activity in Al-treated root apexes. Further investigation demonstrates that nitric oxide (NO) mediates Al-induced increase in cytosolic G6PDH activity by modulating the expression of genes encoding cytosolic G6PDH. In addition, nitrate reductase pathway is mainly responsible for Al-induced NO production in root apexes.

Conclusions

These results indicate that NADPH produced by NO-modulated cytosolic G6PDH in root apexes is responsible for ROS accumulation mediated by NADPH oxidase under Al stress, subsequently suffering from oxidative stress and thus causing the inhibition of root elongation.
  相似文献   

10.
《Free radical research》2013,47(9):1140-1149
Abstract

This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O2·? in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.  相似文献   

11.
The transgenic (mRen2)27 (Ren2) rat overexpresses mouse renin in extrarenal tissues, causing increased local synthesis of ANG II, oxidative stress, and hypertension. However, little is known about the role of oxidative stress induced by the tissue renin-angiotensin system (RAS) as a contributing factor in pulmonary hypertension (PH). Using male Ren2 rats, we test the hypothesis that lung tissue RAS overexpression and resultant oxidative stress contribute to PH and pulmonary vascular remodeling. Mean arterial pressure (MAP), right ventricular systolic pressure (RVSP), and wall thickness of small pulmonary arteries (PA), as well as intrapulmonary NADPH oxidase activity and subunit protein expression and reactive oxygen species (ROS), were compared in age-matched Ren2 and Sprague-Dawley (SD) rats pretreated with the SOD/catalase mimetic tempol for 21 days. In placebo-treated Ren2 rats, MAP and RVSP, as well as intrapulmonary NADPH oxidase activity and subunits (Nox2, p22phox, and Rac-1) and ROS, were elevated compared with placebo-treated SD rats (P < 0.05). Tempol decreased RVSP (P < 0.05), but not MAP, in Ren2 rats. Tempol also reduced intrapulmonary NADPH oxidase activity, Nox2, p22phox, and Rac-1 protein expression, and ROS in Ren2 rats (P < 0.05). Compared with SD rats, the cross-sectional surface area of small PA was 38% greater (P < 0.001) and luminal surface area was 54% less (P < 0.001) in Ren2 rats. Wall surface area was reduced and luminal area was increased in tempol-treated SD and Ren2 rats compared with untreated controls (P < 0.05). Collectively, the results of this investigation support a seminal role for enhanced tissue RAS/oxidative stress as factors in development of PH and pulmonary vascular remodeling.  相似文献   

12.
Dyslipidemia is a well‐established condition proved to accelerate the progression of chronic kidney disease leading to tubulo‐interstitial injury. However, the molecular aspects of the dyslipidemia‐induced renal damage have not been fully clarified and in particular the role played by low‐density lipoproteins (LDLs). This study aimed to examine the effects of native non‐oxidized LDL on cellular oxidative metabolism in cultured human proximal tubular cells. By means of confocal microscopy imaging combined to respirometric and enzymatic assays it is shown that purified native LDL caused a marked increase of cellular reactive oxygen species (ROS) production, which was mediated by activation of NADPH oxidase(s) and by mitochondrial dysfunction by means of a ROS‐induced ROS release mechanism. The LDL‐dependent mitochondrial alterations comprised inhibition of the respiratory chain activity, enhanced ROS production, uncoupling of the oxidative phosphorylation efficiency, collapse of the mtΔΨ, increased Ca2+ uptake and loss of cytochrome c. All the above LDL‐induced effects were completely abrogated by chelating extracellular Ca2+ as well as by inhibition of the Ca2+‐activated cytoplas‐mic phospholipase A2, NADPH oxidase and mitochondrial permeability transition. We propose a mechanicistic model whereby the LDL‐induced intracellular redox unbalance is triggered by a Ca2+ inward flux‐dependent commencement of cPLA2 followed by activation of a lipid‐ and ROS‐based cross‐talking signalling pathway. This involves first oxidants production via the plasmamembrane NADPH oxidase and then propagates downstream to mitochondria eliciting redox‐ and Ca2+‐dependent dysfunctions leading to cell‐harming conditions. These findings may help to clarify the mechanism of dyslipidemia‐induced renal damage and suggest new potential targets for specific therapeutic strategies to prevent oxidative stress implicated in kidney diseases.  相似文献   

13.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

14.
Excess in mitochondrial reactive oxygen species (ROS) is considered as a major cause of cellular oxidative stress. NADPH, the main intracellular reductant, has a key role in keeping glutathione in its reduced form GSH, which scavenges ROS and thus protects the cell from oxidative damage. Here, we report that SIRT5 desuccinylates and deglutarylates isocitrate dehydrogenase 2 (IDH2) and glucose‐6‐phosphate dehydrogenase (G6PD), respectively, and thus activates both NADPH‐producing enzymes. Moreover, we show that knockdown or knockout of SIRT5 leads to high levels of cellular ROS. SIRT5 inactivation leads to the inhibition of IDH2 and G6PD, thereby decreasing NADPH production, lowering GSH, impairing the ability to scavenge ROS, and increasing cellular susceptibility to oxidative stress. Our study uncovers a SIRT5‐dependent mechanism that regulates cellular NADPH homeostasis and redox potential by promoting IDH2 desuccinylation and G6PD deglutarylation.  相似文献   

15.
The biphasic oxidative burst induced by Phaeomoniella chlamydospora extract (Pce) in Vitis vinifera (Vv) cell suspensions was investigated. Treatment of cell suspensions with diphenyleneiodonium chloride, an inhibitor of NADPH oxidase, prevented the Pce‐induced biphasic reactive oxygen species (ROS) accumulation, suggesting that NADPH oxidase is the primary ROS source in the oxidative burst induced by Pce elicitation of Vv cells. The role of Ca2+ in the oxidative burst was also investigated using a Ca2+ chelator and several Ca2+ channel blockers. The treatment of Vv cell suspensions with the Ca2+ chelator ethylene glycol‐bis(2‐aminoethylether)‐N, N, N’; N’‐tetraacetic acid (EGTA) completely inhibited Pce‐induced ROS accumulation, suggesting that Ca2+ availability is necessary for occurrence of the induced oxidative burst. However, only the Ca2+ channel blocker ruthenium red strongly inhibited the Pce‐induced ROS accumulation, suggesting that the specific Ca2+ channel types from which Ca2+ influx is originated also play an important role in the Pce‐induced oxidative burst. Furthermore, Ca2+ availability seems to be necessary for the Pce‐induced activity of NADPH oxidase.  相似文献   

16.
IntroductionAbnormal oxidative stress has been described in systemic sclerosis (SSc) and previous works from our laboratory demonstrated an increased generation of reactive oxygen species (ROS) by SSc fibroblasts and monocytes. This study investigated the ability of SSc T lymphocytes to produce ROS, the molecular pathway involved, and the biological effects of ROS on SSc phenotype.MethodsPeripheral blood T lymphocytes were isolated from serum of healthy controls or SSc patients by negative selection with magnetic beads and activated either with PMA or with magnetic beads coated with anti-CD3 and anti-CD28 antibodies. Intracellular ROS generation was measured using a DCFH-DA assay in a plate reader fluorimeter or by FACS analysis. CD69 expression and cytokine production were analyzed by FACS analysis. Protein expression was studied using immunoblotting techniques and mRNA levels were quantified by real-time PCR. Cell proliferation was carried out using a BrdU incorporation assay.ResultsPeripheral blood T lymphocytes from SSc patients showed an increased ROS production compared to T cells from healthy subjects. Since NADPH oxidase complex is involved in oxidative stress in SSc and we found high levels of gp91phox in SSc T cells, SSc T cells were incubated with chemical inhibititors or specific siRNAs against gp91phox. Inhibition of NADPH oxidase partially reverted CD69 activation and proliferation rate increase, and significantly influenced cytokine production and ERK1/2 activation.ConclusionsSSc T lymphocityes are characterized by high levels of ROS, generated by NADPH oxidase via ERK1/2 phosphorylation, that are essential for cell activation, proliferation, and cytokine production. These data confirm lymphocytes as key cellular players in the pathogenesis of systemic sclerosis and suggest a crucial link between ROS and T cell activation.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0591-8) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA2-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.  相似文献   

19.
NADPH氧化酶催化亚基gp91phox(NOX2)及其同源物NOX1、NOX3、NOX4、NOX5、DUOX1和DUOX2统称为NOX家族,它们作为NADPH酶的核心亚基,是该酶发挥作用的关键。NOX家族几乎存在于所有的细胞,吞噬细胞中NADPH氧化酶生成的ROS主要起细胞防御功能,与此不同的是非吞噬细胞中NADPH氧化酶产生的ROS作为信号分子,参与机体内信号转导途径,调节细胞分化、增殖、衰老和凋亡等活动;当NOX家族蛋白异常表达,ROS水平急剧增加时,则能诱导机体内多种疾病的发生。  相似文献   

20.
Reactive oxygen species (ROS) and oxidative stress are thought to play a central role in the etiology of cell dysfunction and tissue damage in sepsis. However, there is limited and controversial evidence from in vivo studies that ROS mediate cell signaling processes that elicit acute inflammatory responses during sepsis. Because NADPH oxidase is one of the main cellular sources of ROS, we investigated the role of this enzyme in lipopolysaccharide (LPS)-induced acute inflammation in vivo, utilizing mice deficient in the gp91phox or p47phox subunits of NADPH oxidase. Age-and body weight-matched C57BL/6J wild-type (WT) and gp91phox?/? and p47phox?/? mice were injected ip with 50 μg LPS or saline vehicle and sacrificed at various time points up to 24 h. We found that LPS-induced acute inflammatory responses in serum and tissues were not significantly diminished in gp91phox?/? and p47phox?/? mice compared to WT mice. Rather, genetic deficiency of NADPH oxidase was associated with enhanced gene expression of inflammatory mediators and increased neutrophil recruitment to lung and heart. Furthermore, no protection from LPS-induced septic death was observed in either knockout strain. Our findings suggest that NADPH oxidase-mediated ROS production and cellular redox signaling do not promote, but instead limit, LPS-induced acute inflammatory responses in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号