首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Activation of apoptosis is one of the most ancient mechanisms to eliminate intracellular infections; the capacity to subvert this programed cell death provides an adaptive advantage to pathogens that persist in an intracellular environment. Leishmania species are obligate intracellular parasites that primarily reside within host macrophages. We demonstrate here that Leishmania infection protects macrophages from cycloheximide-induced apoptosis in a species and strain specific manner. Our data further reveal that Leishmania phosphoglycans and direct contact between parasites and host cells are required for the inhibitory phenotype.  相似文献   

2.
AimsMagnesium (Mg) deficiency has been reported to be associated with the development of the metabolic syndrome, cardiovascular diseases, and sudden death. We examined the influence of chronic Mg deficiency on cardiac tolerance to hypoxia/reoxygenation injury.Main methodsMice were fed an Mg-deficient diet for 4 weeks, and then their hearts were excised for Langendorff perfusion experiments. The levels of total Mg in the blood and heart were quantified by atomic absorption spectrometry.Key findingsIn Mg-deficient mice, the Mg concentration in whole blood was markedly decreased; however, that in the heart remained unchanged. When the hearts of control mice were exposed to hypoxia/reoxygenation, removal of extracellular Mg from a normal Krebs solution containing 1.2 mM Mg resulted in a significant decrease in the recovery of the tension-rate product (TRP) upon reoxygenation. In Mg-deficient mice, the recovery of TRP in the heart was reduced significantly in the absence of extracellular Mg compared to that in controls. The addition of Mg to the perfusate did not improve TRP recovery. During hypoxia/reoxygenation, cardiac damage evaluated by myocardial aspartate amino trasferase (AST) release was greater in hearts of Mg-deficient mice than in that of control mice.SignificanceThese results indicate that chronic Mg deficiency causes severe hypomagnesemia and a decrease in cardiac tolerance to hypoxia, without changing the intracellular Mg content. The decreased tolerance to hypoxia was not affected by the presence or absence of extracellular Mg, suggesting that some intracellular metabolic abnormalities develop in the cardiac myocytes of Mg-deficient mice.  相似文献   

3.
BACKGROUND:Cardiac injury is common in severe coronavirus disease 2019 (COVID-19) and is associated with poor outcomes. We aimed to study predictors of in-hospital death, characteristics of arrhythmias and the effects of QT-prolonging therapy in patients with cardiac injury.METHODS:We conducted a retrospective cohort study involving patients with severe COVID-19 who were admitted to Tongji Hospital in Wuhan, China, between Jan. 29 and Mar. 8, 2020. Among patients who had cardiac injury, which we defined as an elevated level of cardiac troponin I (cTnI), we identified demographic and clinical characteristics associated with mortality and need for invasive ventilation.RESULTS:Among 1284 patients with severe COVID-19, 1159 had a cTnI level measured on admission to hospital, of whom 170 (14.7%) had results that showed cardiac injury. We found that mortality was markedly higher in patients with cardiac injury (71.2% v. 6.6%, p < 0.001). We determined that initial cTnI (per 10-fold increase, hazard ratio [HR] 1.32, 95% confidence interval [CI] 1.06–1.66) and peak cTnI level during illness (per 10-fold increase, HR 1.70, 95% CI 1.38–2.10) were associated with poor survival. Peak cTnI was also associated with the need for invasive ventilation (odds ratio 3.02, 95% CI 1.92–4.98). We found arrhythmias in 44 of the 170 patients with cardiac injury (25.9%), including 6 patients with ventricular tachycardia or fibrillation, all of whom died. We determined that patients who received QT-prolonging drugs had longer QTc intervals than those who did not receive them (difference in medians, 45 ms, p = 0.01), but such treatment was not independently associated with mortality (HR 1.04, 95% CI 0.69–1.57).INTERPRETATION:We found that in patients with COVID-19 and cardiac injury, initial and peak cTnI levels were associated with poor survival, and peak cTnI was a predictor of need for invasive ventilation. Patients with COVID-19 warrant assessment for cardiac injury and monitoring, especially if therapy that can prolong repolarization is started.Trial registration:Chinese Clinical Trial Registry, No. ChiCTR2000031301.

Poor outcomes have been reported recently in patients with pneumonia associated with coronavirus disease 2019 (COVID-19) and cardiac injury.13 These reports did not characterize patients as dead or discharged from hospital because the COVID-19 pandemic had not completed its course at the time of reporting.13 The initial findings suggested that patients admitted to the intensive care unit (ICU) had an arrhythmia burden of 44.4%;4 however, the exact nature of these arrhythmias was not characterized. Knowing now that cardiac injury is an important predictor of death, characterizing arrhythmias and determining independent predictors of outcome may allow health care providers to implement aggressive therapy and assign accurate probabilities for the outcome, which can be used to identify high-risk groups. In addition, such data would assist in decisions on discharge from the emergency department, therapy with QT-prolonging drugs, rhythm monitoring and triage of ventilators and ICU beds.5In Wuhan, China, the initial outbreak of COVID-19 has run its full course, which provides an opportunity to characterize outcomes and inform strategy for Europe and North America. As such, we evaluated 170 patients from Wuhan who had cardiac injury that was diagnosed early during their admission for pneumonia associated with COVID-19 for the outcomes of death, discharge and arrhythmias. We also characterized the effect of QT-prolonging drugs in these patients. We determined independent predictors of death and mechanical ventilation in this population with cardiac injury and severe COVID-19.  相似文献   

4.
Background:Remote ischemic preconditioning is a simple therapy that may reduce cardiac and kidney injury. We undertook a randomized controlled trial to evaluate the effect of this therapy on markers of heart and kidney injury after cardiac surgery.Methods:Patients at high risk of death within 30 days after cardiac surgery were randomly assigned to undergo remote ischemic preconditioning or a sham procedure after induction of anesthesia. The preconditioning therapy was three 5-minute cycles of thigh ischemia, with 5 minutes of reperfusion between cycles. The sham procedure was identical except that ischemia was not induced. The primary outcome was peak creatine kinase–myocardial band (CK-MB) within 24 hours after surgery (expressed as multiples of the upper limit of normal, with log transformation). The secondary outcome was change in creatinine level within 4 days after surgery (expressed as log-transformed micromoles per litre). Patient-important outcomes were assessed up to 6 months after randomization.Results:We randomly assigned 128 patients to remote ischemic preconditioning and 130 to the sham therapy. There were no significant differences in postoperative CK-MB (absolute mean difference 0.15, 95% confidence interval [CI] −0.07 to 0.36) or creatinine (absolute mean difference 0.06, 95% CI −0.10 to 0.23). Other outcomes did not differ significantly for remote ischemic preconditioning relative to the sham therapy: for myocardial infarction, relative risk (RR) 1.35 (95% CI 0.85 to 2.17); for acute kidney injury, RR 1.10 (95% CI 0.68 to 1.78); for stroke, RR 1.02 (95% CI 0.34 to 3.07); and for death, RR 1.47 (95% CI 0.65 to 3.31).Interpretation:Remote ischemic precnditioning did not reduce myocardial or kidney injury during cardiac surgery. This type of therapy is unlikely to substantially improve patient-important outcomes in cardiac surgery. Trial registration: ClinicalTrials.gov, no. NCT01071265.Each year, 2 million patients worldwide undergo cardiac surgery. For more than 25% of these patients, the surgery is complicated by myocardial infarction (MI) and/or acute kidney injury, both of which are strongly associated with morbidity and mortality.13 Preventing MI and acute kidney injury after cardiac surgery would improve survival.An important cause of MI and acute kidney injury in patients undergoing cardiac surgery is ischemia–reperfusion injury.4,5 This type of injury begins as ischemia, which is then exacerbated by a systemic inflammatory response upon restoration of organ perfusion.6 Remote ischemic preconditioning may mitigate ischemia–reperfusion damage. It is accomplished by inducing, before surgery, brief episodes of ischemia in a limb, which lead to widespread activation of endogenous cellular systems that may protect organs from subsequent severe ischemia and reperfusion.79Small randomized controlled trials evaluating the efficacy of remote ischemic preconditioning have had mixed results.1017 Interpretation of their data is difficult because of small sample sizes and heterogeneity in the preconditioning procedures and patient populations (e.g., few trials have evaluated patients at high risk of organ injury and postoperative death). Whether remote ischemic preconditioning effectively mitigates ischemia–reperfusion injury therefore remains uncertain. We undertook the Remote Ischemic Preconditioning in Cardiac Surgery Trial (Remote IMPACT) to determine whether this procedure reduces myocardial and kidney injury. We proposed that a large trial to determine the effect on clinically important outcomes would be worthwhile only if a substantial effect on myocardial or kidney injury, or both, were observed in the current study.  相似文献   

5.
Abstract

Ischemia-reperfusion (I/R) is a condition leading to serious complications due to death of cardiac myocytes. We used the cardiomyocyte-like cell line H9c2 to study the mechanism underlying cell damage. Exposure of the cells to simulated I/R lead to their apoptosis. Over-expression of Bcl-2 and Bcl-xL protected the cells from apoptosis while over-expression of Bax sensitized them to programmed cell death induction. Mitochondria-targeted coenzyme Q (mitoQ) and superoxide dismutase both inhibited accumulation of reactive oxygen species (ROS) and apoptosis induction. Notably, mtDNA-deficient cells responded to I/R by decreased ROS generation and apoptosis. Using both in situ and in vivo approaches, it was found that apoptosis occurred during reperfusion following ischemia, and recovery was enhanced when hearts from mice were supplemented with mitoQ. In conclusion, I/R results in apoptosis in cultured cardiac myocytes and heart tissue largely via generation of mitochondria-derived superoxide, with ensuing apoptosis during the reperfusion phase.  相似文献   

6.
Cardiac excitation-contraction coupling is a highly coordinated process that is controlled by protein kinase signaling pathways, including Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA). Increased CaMKII expression and activity (as occurs during heart failure) destabilizes EC coupling and may lead to sudden cardiac death. To better understand mechanisms of cardiac CaMKII function, we integrated dynamic CaMKII-dependent regulation of key Ca2+ handling targets with previously validated models of cardiac EC coupling, Ca2+/calmodulin-dependent activation of CaMKII, and β-adrenergic activation of PKA. Model predictions are validated against CaMKII-overexpression data from rabbit ventricular myocytes. The model demonstrates how overall changes to Ca2+ handling during CaMKII overexpression are explained by interactions between individual CaMKII substrates. CaMKII and PKA activities during β-adrenergic stimulation may synergistically facilitate inotropic responses and contribute to a CaMKII-Ca2+-CaMKII feedback loop. CaMKII regulated early frequency-dependent acceleration of relaxation and EC coupling gain (which was highly sarcoplasmic reticulum Ca2+ load-dependent). Additionally, the model identifies CaMKII-dependent ryanodine receptor hyperphosphorylation as a proarrhythmogenic trigger. In summary, we developed a detailed computational model of CaMKII and PKA signaling in cardiac myocytes that provides unique insights into their regulation of normal and pathological Ca2+ handling.  相似文献   

7.
We investigated the hypothesis that high Ca2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.  相似文献   

8.
《Anthrozo?s》2013,26(3):159-170
ABSTRACT

Six hundred and fifty children, aged between 11 and 15 years, from an urban and a rural area, completed a questionnaire in which they provided information regarding their attitudes towards 13 issues involving the use of animals. Information regarding the pets the children owned was also obtained. The child's sex (male, female), age (11–15 years), and residence area (urban, rural) were related to pet ownership, and, including pet ownership, to attitudes towards the use of animals. Over 90% of the sample owned a pet, with the dog being the most common. More pets were owned by children from rural than urban areas. With regards to the animal-use issues, all the children discriminated between animal uses that lead to death of or injury to the animal and those regarded as exploitation. Children disagreed more with uses leading to the animal's death or injury. Females expressed more disagreement than males, and children from urban areas expressed more disagreement than children from rural settings. The study revealed pet ownership to be high among school children. This was matched by a high concern over activities leading to the animal's death or injury, indicating that strong attitudes to animal use are formed early during development. Early education may be important in shaping these attitudes.  相似文献   

9.
ObjectiveThis study was conducted to assess the incidence of sudden cardiac death (SCD) in post myocardial infarction patients and to determine the predictive value of various risk markers in identifying cardiac mortality and SCD.MethodsLeft ventricular function, arrhythmias on Holter and microvolt T wave alternans (MTWA) were assessed in patients with prior myocardial infarction and ejection fraction ≤ 40%. The primary outcome was a composite of cardiac death and resuscitated cardiac arrest during follow up. Secondary outcomes included total mortality and SCD.ResultsFifty-eight patients were included in the study. Eight patients (15.5%) died during a mean follow-up of 22.3 ± 6.6 months. Seven of them (12.1%) had SCD. Among the various risk markers studied, left ventricular ejection fraction (LVEF) ≤ 30% (Hazard ratio 5.6, 95% CI 1.39 to 23) and non-sustained ventricular tachycardia (NSVT) in holter (5.7, 95% CI 1.14 to 29) were significantly associated with the primary outcome in multivariate analysis. Other measures, including QRS width, heart rate variability, heart rate turbulence and MTWA showed no association.ConclusionsAmong patients with prior myocardial infarction and reduced left ventricular function, the rate of cardiac death was substantial, with most of these being sudden cardiac death. Both LVEF ≤30% and NSVT were associated with cardiac death whereas only LVEF predicted SCD. Other parameters did not appear useful for prediction of events in these patients. These findings have implications for decision making for the use of implantable cardioverter defibrillators for primary prevention in these patients.  相似文献   

10.
Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.  相似文献   

11.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

12.
摘要 目的:探讨老年缺血性心力衰竭的心脏DNA甲基化编码重编程与心肌细胞焦亡、铁死亡的关联性。方法:2019年12月到2021月2月,选择在本院诊治的老年缺血性心力衰竭115例作为心衰组,同期选择在本院体检的非心血管疾病老年人群115例作为对照组。检测心脏DNA甲基化编码重编程、心肌细胞焦亡、铁死亡指标表达情况并进行相关性分析。结果:心衰组的心脏DNA甲基化编码重编程指标-miR-92a、miR-130a相对表达水平高于对照组(P<0.05)。心衰组的Caspase-1蛋白、Caspase-4蛋白相对表达水平高于对照组(P<0.05)。心衰组的铁调素含量高于对照组(P<0.05)。在两组230例入选者中,Spearsman相关分析显示:缺血性心力衰竭与miR-92a、miR-130a、半胱氨酸蛋白酶1(Caspase-1)、半胱氨酸蛋白酶4(Caspase-4)、铁调素存在正向相关性(P<0.05)。Logistic回归分析显示:miR-92a、miR-130a、Caspase-1、Caspase-4、铁调素为导致缺血性心力衰竭发生的重要因素(P<0.05)。结论:老年缺血性心力衰竭患者多伴随有心脏DNA甲基化编码重编程与心肌细胞焦亡、铁死亡,后三者与缺血性心力衰竭的发生存在关联性,也是导致缺血性心力衰竭发生的重要因素。  相似文献   

13.
BackgroundOsmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes.Scope of reviewThe present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs.Major conclusionsMAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation.General significanceMAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.  相似文献   

14.
Upon mitogen sensitization, lymphocytes undergo proliferation by oxyradical-based mechanisms. Through continuous resting–restimulation cycles, lymphocytes accumulate auto-induced oxidative lesions which lead to cell dysfunction and limit their viability. Astaxanthin (ASTA) is a nutritional carotenoid that shows notable antioxidant properties. This study aims to evaluate whether the in vitro ASTA treatment can limit oxyradical production and auto-oxidative injury in human lymphocytes. Activated lymphocytes treated with 5 μM ASTA showed immediate lower rates of O2•−/H2O2 production whilst NO and intracellular Ca2+ levels were concomitantly enhanced (≤4 h). In long-term treatments (>24 h), the cytotoxicity test for ASTA showed a sigmoidal dose–response curve (LC50 = 11.67 ± 0.42 μM), whereas higher activities of superoxide dismutase and catalase in 5 μM ASTA-treated lymphocytes were associated to significant lower indexes of oxidative injury. On the other hand, lower proliferative scores of ASTA lymphocytes might be a result of diminished intracellular levels of pivotal redox signaling molecules, such as H2O2. Further studies are necessary to establish the ASTA-dose compensation point between minimizing oxidative damages and allowing efficient redox-mediated immune functions, such as proliferation, adhesion, and oxidative burst.  相似文献   

15.
F Xie  S Sun  A Xu  S Zheng  M Xue  P Wu  J H Zeng  L Bai 《Cell death & disease》2014,5(1):e1006
Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn''s disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor that contributes to IBD progression. Targeting AOPP-induced cellular mechanisms might emerge as a promising therapeutic option for patients with IBD.  相似文献   

16.
BackgroundCardiac troponin I (cTnI) has two flexible tails that control the cardiac cycle. The C-terminal tail, cTnI135–209, binds actin to shut off cardiac muscle contraction, whereas the competing calcium-dependent binding of the switch region, cTnI146–158, by cardiac troponin C (cTnC) triggers contraction. The N-terminal tail, cTnI1–37, regulates the calcium affinity of cTnC. cTnI is known to be susceptible to proteolytic cleavage by matrix metalloproteinase-2 (MMP-2) and calpain, two intracellular proteases implicated in ischemia-reperfusion injury.MethodsSoluble fragments of cTnI containing its N- and C-terminal tails, cTnI1–77 and cTnI135–209, were highly expressed and purified from E. coli. We performed in vitro proteolysis studies of both constructs using liquid chromatography-mass spectrometry and solution NMR studies of the C-terminal tail.ResultscTnI135–209 is intrinsically disordered, though it contains three regions with helical propensity (including the switch region) that acquire more structure upon actin binding. We identified three precise MMP-2 cleavage sites at cTnI P17-I18, A156-L157, and G199-M200. In contrast, calpain-2 has numerous cleavage sites throughout Y25-T30 and A152-A160. The critical cTnI switch region is targeted by both proteases.ConclusionsBoth N-terminal and C-terminal tails of cTnI are susceptible to cleavage by MMP-2 and calpain-2. Binding to cTnC or actin confers some protection to proteolysis, which can be understood in terms of their interactions as probed by NMR studies.General significancecTnI is an important marker of intracellular proteolysis in cardiomyocytes, given its many protease-specific cut sites, high natural abundance, indispensable functional role, and clinical use as gold standard biomarker of myocardial injury.  相似文献   

17.
摘要 目的:探讨QRS时限值(QRS)、QT间期延长(QT)、QTc间期(QTc)及左室射血分数(LVEF)预测心源性猝死的价值分析。方法:选择2018年1月至2019年12月川北医学院附属医院心血管内科治疗的356例心源性猝死患者进行研究,设为病例组,并选择同期体检的健康人200例作为对照组,分析QRS、QT、QTc及LVEF水平变化情况及其预测价值。结果:病例组QRS、QTc水平显著高于对照组,QT、LVEF水平显著低于对照组,差异显著(P<0.05);轻度QRS、QTc显著低于中度、重度患者,QT、LVEF水平显著高于中度、重度患者;中度患者QRS、QTc显著低于重度患者,QT、LVEF水平显著高于重度患者,差异显著(P<0.05);ROC结果显示,QRS预测心源性猝死的AUC为0.989,灵敏度△为84.59%,特异度为87.68%,截断值为115.59ms;QT预测心源性猝死的AUC为0.944,灵敏度85.12%,特异度为88.45%,截断值为21.69ms;QTc预测心源性猝死的AUC为0.984,灵敏度为86.05%,特异度为88.61%,截断值为416.39ms,LVEF预测心源性猝死的AUC为0.997,灵敏度87.15%,特异度为89.05%,截断值为45.63%,(P<0.05)。结论:QRS、QT、QTc及LVEF在心源性猝死患者中检查,可显著提高心源性猝死临床诊断效能。  相似文献   

18.
Trypanosoma cruzi causes Chagas disease, a neglected illness that affects millions of people worldwide, especially in Latin America. The balance between biochemical pathways triggered by the parasite and host cells response will ultimately define the progression of a life-threatening disease, justifying the efforts to understand cellular mechanisms for infection restrain. In this interaction, parasite and host cells are affected by different physiological responses as autophagy modulation, which could be under intense cellular stress, such as nutrient deprivation, hormone depletion, or infection. Autophagy is a constitutive pathway that leads to degradation of macromolecules and cellular structures and may induce cell death. In Trypanosoma cruzi infection, the relevance of host autophagy is controversial regarding in vitro parasite intracellular life cycle. In the present study, we evaluated host cell autophagy during T. cruzi infection in phagocytic and non-professional phagocytic cells. We described that the presence of the parasite increased the number of LC3 puncta, a marker for autophagy, in cardiac cells and peritoneal macrophages in vitro. The induction of host autophagy decreased infection in macrophages in early and late time-periods. We suggest that starved phagocytic cells reduced internalization, also confirmed by inert particles and dead trypomastigotes. Whereas, in cardiac cells, starvation-induced autophagy decreased lipid droplets and infection in later time-point, by reducing parasite differentiation/proliferation. In ATG5 knockout MEF cells, we confirmed our hypothesis of autophagy machinery activation during parasite internalization, increasing infection. Our data suggest that host autophagy downregulates T. cruzi infection through impairing parasite intracellular life cycle, reducing the infection in primary culture cells.  相似文献   

19.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.  相似文献   

20.
Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号