首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Studies on the effects of tropical rainforest fragmentation and disturbance have often focussed on plants and vertebrates such as birds and mammals and seldom on invertebrates, despite the latter being among the most biologically diverse groups in these ecosystems. Spiders are one such group of invertebrate predators that are known to be sensitive indicators of environmental change in tropical ecosystems. The present study assesses the spider community structure and responses to rainforest fragmentation and degradation and conversion to shade-coffee plantations in the Anamalai hills, southern Western Ghats, India. Ten rainforest fragments ranging in size from 11 ha to 2,600 ha under varying levels of degradation within the Indira Gandhi Wildlife Sanctuary and private lands of the Valparai plateau, and two shade-coffee plantation sites were sampled for spiders using visual searches along time-constrained belt transects between January and May 2005. Within a total sampled area of 5.76 ha, 4,565 individual spiders (4,300 detections) belonging to 156 morphospecies within 21 families and 8 functional groups were recorded. The estimated total number of understorey spider species in the study area was 192 (±5.15 SD) species, representing around 13% of the total number of spider species so far described from India. Overall spider density, species richness, and species density showed no trend in relation to fragment area across all sites. Specific comparisons among undisturbed sites indicated however that high altitude sites had fewer species than mid-altitude sites and fragments had fewer species than relatively larger continuous forest sites. In contrast to the lack of trend in overall species richness and abundance, species composition changed substantially in relation to habitat alteration and altitude. Cluster analysis of Bray-Curtis similarities among sites in spider species composition revealed four distinct clusters: high altitude undisturbed sites, mid-altitude disturbed sites with an undisturbed mid altitude site, mid-altitude highly disturbed sites with a disturbed site, and shade-coffee plantation sites. Spider species, such as Psechrus torvus and Tylorida culta, that contributed significantly to the dissimilarity between undisturbed and disturbed rainforest sites, and rainforest and shade-coffee sites were identified that serve as useful indicators of habitat alteration.  相似文献   

2.
3.
Question: Are soil properties and topographic variation related with palm (Arecaceae) species composition and distribution patterns? If so, are species distribution patterns consistent across sites? Location: 100–200 m a.s.l, non‐inundated Amazonian rainforest, NE Peru. Methods: One 0.65‐ha line transect divided into 5 m by 5 m subunits was inventoried for all palm individuals at each site. Soil samples were collected, and topography was measured. Results: A total of 56 palm taxa were recorded. Floristic similarity among transects clearly corresponded with similarity in soil cation content when species abundances were taken into account, but less so when only presence‐absence data were used. Taxon‐wise distribution analyses were done for the 37 most abundant palm taxa. Quite a few of these taxa proved not to be randomly distributed along the transects, but instead were clearly more abundant in some topographic positions than in others. However, the consistency of the distribution patterns across study sites proved to be rather low, and many of the palm taxa showed different distribution patterns at different sites. Conclusions: The ambiguity in distribution patterns across study sites may partly be due to the complexity of topography as a measure of ecological conditions, and the probability that it is related to the variation in different environmental variables at different sites.  相似文献   

4.
A significant question faced by environmental managers is how muchsurvey effort is required in order to obtain an accurate representation of thespecies richness in an area. The appropriateness of rapid survey techniques foridentifying biodiverse hotspots has not been previously tested for molluscs onintertidal rocky reefs. We used species inventories from standardized 4-h searchsurveys to rank 13 intertidal reefs in terms of their species richness and thesewere then compared to cumulative species records following repeated surveys fromthe same sites. A total of 172 surveys were conducted during low water springtides over a 3 year period, with up to 20 surveys at a single site.Species richness in the inventories varied from 20 to 94 on the different reefs.There was a strong correlation between the number of species recorded in thestandardized inventory and the total species richness from cumulative surveyrecords (r = 0.969; P < 0.001).Importantly, the total species diversity recorded at each site was not relatedto the number of surveys that were conducted at that site(r = 0.110; P = 0.784). This confirmsthat a single standardized timed search produces a useful representation ofmolluscan species richness. The majority of molluscs recorded in this study wereendemic to Australia (59%) and, significantly, the number of endemics waspositively correlated to the total species richness found at each site(r = 0.992; P < 0.0001). Our dataprovide clear evidence for a local hotspot of molluscan species richness andendemism on the northern side of Bass Point, Shellharbour. We suggest that on alocal scale biodiversity hotspots should only be identified as those sites thatcontain significantly more species than the local average. Two standarddeviations above the mean appears to be an appropriate cut-off for identifyinglocal biodiversity hotspots.  相似文献   

5.
Spiders were sampled using insecticide knockdown in an African montane forest in the Uzungwa Mountains of Tanzania. The results are used to discuss the faunal composition at the site and in comparison to other sites, and the implications of the results for estimating spider diversity in Africa are discussed. A total of 5233 adults comprising 149 species were collected from 11 samples covering a total of 906 m2 of projected area. Three species contributed 45% of the sample. Previous insecticide knockdown studies of tropical lowland forest canopies have shown a dominance of Theridiidae, Salticidae and Araneidae. In the present study Linyphiidae dominated in abundance and were the second most diverse in terms of species richness. Other abundant families were Oonopidae and Pholcidae, while Theridiidae, Salticidae and Araneidae were rich in species. This supports a previous study, which indicated that the importance of linyphiids increases with altitude. Species richness was predicted using a number of estimators, which produced relatively similar results. Using the abundance-based estimator, Chao 1, the predicted richness for the total area sampled is 183 ± 15 species. This indicates that at least 20% of the area's spider community remains unsampled. A high ratio of undescribed species (approximately 80%) and a relatively high species turnover compared to a site 20 km away within the same forest complex suggests that the number of spiders in Africa could well be much higher than the current, published estimate of 20000 species.  相似文献   

6.
B. Khan  M. H. Colbo 《Hydrobiologia》2008,600(1):229-235
This study examined the impact of physical disturbance from long-established road culverts on stream macroinvertebrate communities. Three streams within a 6 km section of highway on the Avalon Peninsula, Newfoundland, Canada, were sampled. Streams had the entire upstream watershed and at least 100 m downstream of the road with natural boreal forest/barren vegetation and all had, within the sampled reaches, similar physical streambed characteristics. The fauna on stones from riffles was sampled at two upstream and three downstream sites, i.e., from 50 m above to about 100 m below the road in each stream. A total of 33 taxa were identified among the streams, with differences limited to a few rare taxa. The sample site communities did not significantly differ from each other with respect to the taxa present. Total macroinvertebrate abundance by site, for combined data of all streams, indicated the site at the exit of culvert plunge pool (site 3) had significantly elevated abundances. Analysis of individual taxa showed this was primarily due to very high numbers of Simulium spp. The other most notable changes were a decrease in numbers of Hydropsyche spp. and Elmidae below the road. The abundances of the remaining taxa were more variable among all sites. The study indicated that long-standing point source physical disturbance primarily impacted taxa abundance rather than community present/absent data, which will recolonize the disturbed zone by downstream drift. The differences in abundance are probably the result of the cleaning of substrate by abrasion, movement of substrate and reduction of detritus during each spate. Handling editor: D. Dudgeon  相似文献   

7.
We investigated species composition, distribution, and forest structure of understory trees (≥1 m height, <10 cm diameter at breast height) in two late-successional várzea forests subject to contrasting levels of inundation within the Mamirauá Sustainable Development Reserve, western Brazilian Amazon, and compared it with the overstory flora at the same study sites. In total, 1486 individuals and 116 woody species were recorded on an area totaling 3140 m2. Individual densities and tree species richness were considerably higher in the high várzea than in the low várzea, which suggests that the heights and durations of the annual inundations are the main factor limiting species regeneration. In addition, approximately one third of the recorded species with densities ≥8 individuals showed regular or random spatial distribution patterns, which suggests that floodwaters act on dispersal strategies and species establishment.Independent of the forest type, floristic similarity between the understory and the overstory amounted to approximately 35%, and to approximately 10% when compared to other understory inventories in Amazonian várzea. Although the inventoried area of the understory amounted to only 16% of that of the overstory, species richness accounted for approximately 52-56% of that of the overstory. The results indicate that the understory flora of várzea forests is distinct and that it significantly increases local tree species richness. The understory flora of várzea forests therefore should be addressed in floristic inventories that provide the basis for regional and/or basin-wide estimations of tree diversity.  相似文献   

8.
Abstract. Patterns of β‐diversity in a highly diverse tropical dry forest tree community are described; the contribution of environmental heterogeneity and distance to β‐diversity was assessed. Significant differences in elevation, insolation, slope and soil water holding capacity (p < 0.01), variables related to water availability, were found among 830 m × 100 m transects laid along contrasting slopes of a system of three parallel microbasins. A gradient in elevation and insolation was found within north‐facing transects, among 10 m × 10 m sites; south‐facing transects showed an elevation gradient while crest transects showed a gradient in water holding capacity. In total 119 species were registered, with 27 to 64 species per transect, and 4 to 16 species per site. A large β‐diversity was found among and within transects; two indices of β‐diversity consistently showed a higher β‐diversity within transects than among them. Among transects, 64% of the variance in species composition could be attributed to the environmental variables; an additional 22% to the spatial distribution of sites. Within transects, 42% of the deviance in β‐diversity values was explained by insolation, and 19% by distance. β‐diversity increased with distance and with difference in insolation among sites; north‐facing transects, those with most contrasting insolation conditions, had the steepest increase in β‐diversity with distance. Such increase was clearly associated with changes in species composition, not with changes in species richness.  相似文献   

9.
Plant species diversity has been recognized as one of the vital attributes for assessing vegetation restoration. Changes in the diversity may be related to different stages of succession. In this study, 54 sites of humid, evergreen, broad-leaved forest were selected in the Rainy Zone of West China. A chronosequence of the sites was used to study the successive patterns of the diversity in the forest that had undergone natural regeneration for 5 to 350 years and to test the hypothesis that the diversity is maximized in mid-succession. Data were collected simultaneously at different stages of succession, and four α-diversity indices (species richness, Margalef index, Shannon-Wiener index, Pielou Evenness index) and two β-diversity indices (Whittaker index, Sørensen’s index) were calculated for each stratum in each plot. A total of 394 vascular plant species were recorded. From the β-diversity indices, the forest succession may be divided into the early-successional stage (before 50 years), mid-successional stage (from 50 to 300 years), and late-successional stage (after 300 years). In this community, the species diversity and richness were found to be the greatest at the mid-successional stage, followed by the late- and early-successional stages. The results of regression analysis indicated that the richness and Margalef index peaked around the 175th and 165th year, respectively. Shannon-Wiener index values also appeared to follow an approximately humped pattern of succession and were maximal around the 100th year. However, the species evenness did not show any significant relationship with successional age. Our results demonstrate (1) forest restoration is a long-term process and the formation of climax forest requires at least 300 years and (2) the forest has a strong capacity for restoration. Our results also suggest Lindera limprichitii and Machilus pingii as ideal tree species for afforestation because of their wide niche.  相似文献   

10.
A Modified-Whittaker nested vegetation sampling method   总被引:8,自引:0,他引:8  
A standardized sampling technique for measuring plant diversity is needed to assist in resource inventories and for monitoring long-term trends in vascular plant species richness. The widely used Whittaker plot (Shmida 1984) collects species richness data at multiple spatial scales, using 1 m2, 10 m2, and 100 m2 subplots within a 20 m × 50 m (1000 m2) plot, but it has three distinct design flaws involving the shape and placement of subplots. We modified and tested a comparable sampling design (Modified-Whittaker plot) that minimizes the problems encountered in the original Whittaker design, while maintaining many of its attractive attributes. We overlaid the two sampling methods in forest and prairie vegetation types in Larimer County, Colorado, USA (n=13 sites) and Wind Cave National Park, South Dakota, USA (n=19 sites) and showed that the modified design often returned significantly higher (p<0.05) species richness values in the 1 m2, 10 m2, and 100 m2 subplots. For all plots, except seven ecotone plots, there was a significant difference (p<0.001) between the Whittaker plot and the Modified-Whittaker plot when estimating the total number of species in the 1000 m2 plots based on linear regressions of the subplot data: the Whittaker plot method, on average, underestimated plant species richness by 34%. Species-area relationships, using the Modified-Whittaker design, conformed better to published semilog relationships, explaining, on average, 92% of the variation. Using the original Whittaker design, the semilog species-area relationships were not as strong, explaining only 83% of the variation, on average. The Modified-Whittaker plot design may allow for better estimates of mean species cover, analysis of plant diversity patterns at multiple spatial scales, and trend analysis from monitoring a series of strategically-placed, long-term plots.  相似文献   

11.
Question: Herb‐rich patches are biodiversity hotspots for vascular plants in boreal forests. We ask: Do species occurrences on herb‐rich patches show a non‐random, nested structure?; Does patch size relate to richness of edaphically demanding and red‐listed species?; Does a set of small patches support more edaphically demanding and red‐listed species than a few large patches of the equal area? Location: Eastern Finland (63°04′N, 29°52′E), boreal vegetation zone. Data: Vegetation mapping of 90 herb‐rich sites, varying from 0.05 to 6.93 ha in size and belonging to six different, predetermined forest site types. Results: Using the RANDNEST procedure, only one site type showed a significantly nested pattern, and patch area was not related to “nestedness” in any of the site types. The number of edaphically demanding and red‐listed plant species was positively correlated with a patch size in three forest site types. In all site types, a set of small patches had more edaphically demanding and red‐listed species than did a few large patches of the equal total area. Conclusions: For conservation, it is essential to protect representative sets of different herb‐rich forest site types because flora varies between the site types. Within herb‐rich forest site types, several small areas may support representative species composition. However, successful conservation requires thorough species inventories, because of the high level of heterogeneity between the herb‐rich patches.  相似文献   

12.
A survey was conducted on the species composition, richness and abundance of Papilionoidea (excluding Lycaenidae) butterfly fauna in habitats with various degrees of disturbance and altitudes in tropical forests at Tam Dao National Park, northern Vietnam in 2001. The transect method was used to collect data in the survey. Six transects representing different habitat types at two sites, one site located at a low elevation of 200–250 m a.s.l., and the other located at a high elevation of 950–1000 m a.s.l., were chosen: three transects for each site, with a length of 500 m for each transect. A total of 3594 individuals of 127 species in 240 sets of data were recorded from various habitats. The differences in butterfly composition, species richness, abundance and diversity in different habitat types and altitudes were analyzed. The results showed significant differences of butterfly diversity among the different habitat types and between the low and high altitude sites. The butterfly diversity, species richness and species abundance in the low elevation habitats were higher than in the high elevation habitats. The highest diversity of butterflies occurred in the mixed habitats of agriculture, scrub and clearing lands of high disturbance. However, butterflies most important for conservation are associated with undisturbed or moderately disturbed forests only.  相似文献   

13.
Synopsis Fish assemblages at an artificial reef site, a natural reef site and a sandy-mud bottom site, on the shelf (depth 130 m) off Iwate Prefecture, northern Japan, were surveyed by using a bottom trammel net from May 1987 to March 1993. A total of 12 173 fishes of 48 species were recorded. Physiculus maximowiczi was dominant and comprised 69% of the total numerical abundance. Total fish number was lowest in March at all the 3 sites when P. maximowiczi migrated to deeper and warmer waters. Assemblage equitability and species diversity also varied seasonally in accordance with the abundance fluctuation of P. maximowiczi. P. maximowiczi, Alcichthys alcicornis and Hexagrammos otakii were more abundant at the artificial reef and natural reef sites, while Dexistes rikuzenius and Hemitripterus villosus were more abundant at the sandy-mud bottom site; total fish abundance was largest at the artificial reef site mainly due to the large number of P. maximowiczi. Species richness was similar among sites, but equitability, and consequently species diversity, was lowest at the artificial reef site. The main effect of the artificial reef seemed the attraction of P. maximowiczi from nearby bottoms, especially from natural rocky reefs; its large abundance determined the structure of the artificial reef fish community.  相似文献   

14.
15.
Within a subprogram of Integrated Monitoring (IM), understorey vegetation in Swedish natural forests was observed at fifteen reference sites over the country for twelve seasons, 1982–1993. The main task of the subprogram was to assess the impact of atmospheric deposition, mainly sulphur and nitrogen, on natural vegetation through time. The present study is focused on the variability of plant species diversity at community level and the possible impact of sulphur and nitrogen deposition. Species richness, evenness and diversity varied greatly among the sites, and between years within each site. Regarding only coniferous forests the species richness was higher in the north than in the south. But the effects of site condition and atmospheric deposition were not clarified. Changes in species diversity through time differed from site to site. No overall temporal trend was found. The atmospheric deposition of sulphur and nitrogen demonstrated a clear geographical pattern being low in the north-west and high in the south-west. Sulphur deposition declined significantly in Southern Sweden during the period. We concluded that the species diversity of understorey vegetation at the Swedish IM sites was not significantly influenced by atmospheric deposition. The changes observed are explained as natural processes.  相似文献   

16.
Abstract: Little quantitative information exists about the survey effort necessary to inventory temperate bat species assemblages. We used a bootstrap resampling algorithm to estimate the number of mist net surveys required to capture individuals from 9 species at both study area and site levels using data collected in a forested watershed in northwestern California, USA, during 1996–2000. The mean number of simulated surveys required to capture individual species varied with species' rarity and ranged from 1.5 to 44.9. We retrospectively evaluated strategies to reduce required survey effort by subsampling data from 1996 to 1998 and tested the strategies in the field during 1999 and 2000. Using data from 1996 to 1998, the mean number of simulated surveys required to capture 8 out of 9 species was 26.3, but a 95% probability of capture required >61 surveys. Inventory efficiency, defined as the cumulative proportion of species detected per survey effort, improved for both the study area and individual sites by conducting surveys later in summer. We realized further improvements in study area inventory efficiency by focusing on productive sites. We found that 3 surveys conducted between 1 July and 10 September at each of 4 productive sites in this 10-km2 study area resulted in the capture of 8 species annually. Quantitative estimation of the survey effort required to assess bat species occurrence improves the ability to plan and execute reliable, efficient inventories. Results from our study should be useful for planning inventories in nearby geographical areas and similar habitat types; further, the analytical methods we used to assess effort are broadly applicable to other survey methods and taxa.  相似文献   

17.
Detailed knowledge of the biodiversity of spider communities on agricultural land is important both in terms of enhancing pest control and understanding the driving forces influencing nature conservation value. Pitfall traps were used to assess spider species diversity at 71 Scottish agricultural sites between May and September during 1996 and 1997. Land-use varied from intensive arable fields, grasslands and extensive heather (Calluna vulgaris) moorland. Spider species richness (S) was found to decrease significantly as farm management intensity increased. Several linear regression models based on the 1996 data (50 sites) and a selection of plant, soil and landscape variables explained up to 88% of the variation in species richness. Four of these models were used to estimate 1997 species richness (36 sites: 15 repeat and 21 new) and up to 58% of sites were correctly predicted to within ± four species of the actual number caught. As only 60% of the repeat 1997 sites had values of S within four units of their 1996 score, this suggested a relatively high level of model accuracy. Model accuracy increased to 64% when all four models were used for each site, suggesting the individual models should be targeted at specific land-use types. We discuss the relevance of these models for predicting the consequences of changes in agricultural land-use for spider diversity.  相似文献   

18.
Liana diversity was inventoried in four tropical dry evergreen forest sites that are characterized by numerous trees, of short stature and small diameter, and a varying degree of anthropogenic disturbance, on the Coromandel coast of south India. A 1-ha plot was established in each of the four sites and was subdivided into 100 quadrats of 10 m× 10 m. All lianas 1 cm diameter at breast height (dbh) rooted within the plot were enumerated. The species richness and density of lianas, with respect to site disturbance and forest stature, varied across the sites. Liana density totaled 3307 individuals (range 497–1163 individuals ha–1) and species richness totaled 39 species (range 24–29 species ha–1) representing 34 genera and 24 families. Combretaceae, Asclepiadaceae, Capparaceae and Vitaceae were the well-represented families. The top five species Strychnos minor, Combretum albidum, Derris ovalifolia, Jasminum angustifolium and Reissantia indica contributed 55% of total density. The slopes of the species–area curves were different for each of the four sites and the curve stabilized in only one site. Of the four climbing modes recognized among the total 39 species, 18 were twiners (56% of the total density). Eight species (24% of density) were tendril climbers and 12 species (16% of density) were scramblers. Hugonia mystax was the only hook climber. All the 39 species and 88% of liana density were encountered within a category of 6 cm dbh or less, and a similar pattern prevailed in the individual sites. Of the three diaspore dispersal modes found among the 39 liana species, animal (64%) and wind (23%) dispersal were predominant over the autochorous mode (13%). Liana diversity and distribution in dry forest communities appear to be influenced by forest stature and site disturbance levels. In the light of the extent of liana diversity and sacred grove status of the study sites, the need for forest conservation, involving local people, is emphasized.  相似文献   

19.
Rosamonde R. Cook 《Oecologia》1995,101(2):204-210
Biotic assemblages are said to be nested when the species making up relatively species-poor biotas comprise subsets of the species present at richer sites. Because species number and site area are often correlated, previous studies have suggested that nestedness may be relevant to questions of how habitat subdivision affects species diversity, particularly with respect to the question of whether a single large, contiguous patch of habitat will generally contain more species than collections of smaller patches having the same total combined area. However, inferences from analyses of nestedness are complicated by (1) variability in degrees of nestedness measured in natural communities, (2) variability in species-area relationships, and (3) the fact that nestedness statistics do not account for the size of habitat patches, only in the degree of overlap among sites with different numbers of species. By comparing various indices of nestedness with a saturation index that more directly measures the effect of habitat subdivision, it is shown that the first two of these factors are not as important as the third. Whether a single large site or several smaller ones having the same total combined area maximizes species diversity is dependent on (1) overlap in species composition among sites and (2) the number of species per unit area in the different sites. Because nestedness indices do not account for species number at a site, they cannot accurately predict how habitat subdivision affects species diversity patterns. Still, nestedness analyses are important in that they indicate the degree to which rare species tend to be found in the largest, or the most species-rich, sites, patterns not revealed by the saturation index. Both types of analysis are important in order to obtain a more complete picture of how species richness and compositional patterns are influenced by habitat subdivision.  相似文献   

20.
Our current understanding of bird community responses to tropical forest fires is limited and strongly geographically biased towards South America. Here we used the circular plot method to carry out complete bird inventories in undisturbed, once burned (1998) and twice burned forests (1983 and 1998) in East Kalimantan (Indonesia). Additionally, environmental variables were measured within a 25 m radius of each plot. Three years after fire the number of birds and bird species were similar for undisturbed and burned forests, but species diversity and turnover were significantly lower in the burned forests. The bird species composition also differed significantly between undisturbed and burned forests, with a strong decline of closed forest preferring bird species accompanied by a strong increase in degraded forest preferring species in burned forests. These differences were strongly related to differences in environmental conditions such as shifts in vegetation cover and layering and differences in ground and understorey vegetation structure. We also found significant shifts in body mass distribution, foraging height and feeding guilds between the bird communities in unburned and burned forests. Surprisingly, repeated burning did not lead to increasing impoverishment of the avifauna, and both once and twice burned forests still contained most of the bird species that were also present in undisturbed forest, even though their densities were considerably lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号