首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Using bioinformatic tools, mutagenesis, and binding studies, we have investigated the structural organization of the extracellular region of the RET receptor tyrosine kinase, a functional receptor for glial cell line-derived neurotrophic factor (GDNF). Multiple sequence alignments of seven vertebrate sequences and one invertebrate RET sequence delineated four distinct N-terminal domains, each of about 110 residues, containing many of the consensus motifs of the cadherin fold. Based on these alignments and the crystal structures of epithelial and neural cadherins, we have generated molecular models of each of the four cadherin-like domains in the extracellular region of human RET. The modeled structures represent realistic models from both energetic and geometrical points of view and are consistent with previous observations gathered from biochemical analyses of the effects of Hirschsprung's disease mutations affecting the folding and stability of the RET molecule, as well as our own site-directed mutagenesis studies of RET cadherin-like domain 1. We have also investigated the role of Ca(2+) in ligand binding by RET and found that Ca(2+) ions are required for RET binding to GDNF but not for GDNF binding to the GFRalpha1 co-receptor. In agreement with these results, RET, but not GFRalpha1, was found to bind Ca(2+) directly. Our results indicate that the overall architecture of the extracellular region of RET is more closely related to cadherins than previously thought. The models of the cadherin-like domains of human RET represent valuable tools with which to guide future site-directed mutagenesis studies aimed at identifying residues involved in ligand binding and receptor activation.  相似文献   

3.
Glial cell line-derived neurotrophic factor (GDNF), a neuronal survival factor, binds its co-receptor GDNF family receptor alpha1 (GFR alpha 1) in a 2:2 ratio and signals through the receptor tyrosine kinase RET. We have solved the GDNF(2).GFR alpha 1(2) complex structure at 2.35 A resolution in the presence of a heparin mimic, sucrose octasulfate. The structure of our GDNF(2).GFR alpha 1(2) complex and the previously published artemin(2).GFR alpha 3(2) complex are unlike in three ways. First, we have experimentally identified residues that differ in the ligand-GFR alpha interface between the two structures, in particular ones that buttress the key conserved Arg(GFR alpha)-Glu(ligand)-Arg(GFR alpha) interaction. Second, the flexible GDNF ligand "finger" loops fit differently into the GFR alphas, which are rigid. Third, and we believe most importantly, the quaternary structure of the two tetramers is dissimilar, because the angle between the two GDNF monomers is different. This suggests that the RET-RET interaction differs in different ligand(2)-co-receptor(2)-RET(2) heterohexamer complexes. Consistent with this, we showed that GDNF(2).GFR alpha1(2) and artemin(2).GFR alpha 3(2) signal differently in a mitogen-activated protein kinase assay. Furthermore, we have shown by mutagenesis and enzyme-linked immunosorbent assays of RET phosphorylation that RET probably interacts with GFR alpha 1 residues Arg-190, Lys-194, Arg-197, Gln-198, Lys-202, Arg-257, Arg-259, Glu-323, and Asp-324 upon both domains 2 and 3. Interestingly, in our structure, sucrose octasulfate also binds to the Arg(190)-Lys(202) region in GFR alpha 1 domain 2. This may explain how GDNF.GFR alpha 1 can mediate cell adhesion and how heparin might inhibit GDNF signaling through RET.  相似文献   

4.
The RET receptor tyrosine kinase controls kidney organogenesis and development of subpopulations of enteric and sensory neurons in different vertebrate species, including humans, rodents, chicken and zebrafish. RET is activated by binding to a ligand complex formed by a member of the glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors bound to its cognate GFRalpha GPI-linked co-receptor. Despite the absence of GDNF or GFRalpha molecules in the Drosophila genome, a RET orthologue (dRET) has recently been described in this organism and shown to be expressed in subpopulations of cells of the excretory, digestive and nervous systems, thus resembling the expression pattern of RET in vertebrates. In this study, we report on the initial biochemical and functional characterization of the dRET protein in cell culture systems. Full-length dRET could be produced in mammalian and insect cells. Similar to its human counterpart (hRET), overexpression of dRET resulted in its ligand-independent tyrosine phosphorylation, indicating that it bears an active tyrosine kinase. Unlike hRET, however, the extracellular domain of dRET was unable to interact with mammalian GDNF and GFRalpha1. Self association between dRET molecules could neither be detected, indicating that dRET is incapable of mediating cell adhesion by homophilic interactions. A chimeric molecule comprising the extracellular domain of hRET and the kinase domain of dRET was constructed and used to probe ligand-mediated downstream activities of the dRET kinase in PC12 cells. GDNF stimulation of cells transfected with the hRET/dRET chimera resulted in neurite outgrowth comparable to that obtained after transfection of wild-type hRET. These results indicate significant conservation between the biological effects elicited by the human and Drosophila RET kinases, and suggest functions for dRET in neuronal differentiation in the fly.  相似文献   

5.
Glial cell line-derived neurotrophic factor (GDNF) family ligands signal through receptor complex consisting of a glycosylphosphatidylinositol-linked GDNF family receptor (GFR) alpha subunit and the transmembrane receptor tyrosine kinase RET. The inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN2), associated with different mutations in RET, is characterized by medullary thyroid carcinoma. GDNF signals via GFRalpha1, neurturin via GFRalpha2, artemin via GFRalpha3, whereas the mammalian GFRalpha receptor for persephin (PSPN) is unknown. Here we characterize the human GFRalpha4 as the ligand-binding subunit required together with RET for PSPN signaling. Human and mouse GFRalpha4 lack the first Cys-rich domain characteristic of other GFRalpha receptors. Unlabeled PSPN displaces (125)I-PSPN from GFRA4-transfected cells, which express endogenous Ret. PSPN can be specifically cross-linked to mammalian GFRalpha4 and Ret, and is able to promote autophosphorylation of Ret in GFRA4-transfected cells. PSPN, but not other GDNF family ligands, promotes the survival of cultured sympathetic neurons microinjected with GFRA4. We identified different splice forms of human GFRA4 mRNA encoding for two glycosylphosphatidylinositol-linked and one putative soluble isoform that were predominantly expressed in the thyroid gland. Overlapping expression of RET and GFRA4 but not other GFRA mRNAs in normal and malignant thyroid medullary cells suggests that GFRalpha4 may restrict the MEN2 syndrome to these cells.  相似文献   

6.
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET.  相似文献   

7.
The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRα1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRα1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRα1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRα1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRα1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function.  相似文献   

8.
Glial cell line-derived neurotrophic factor (GDNF) is a growth factor promoting the survival of several neuronal populations in the central, peripheral and autonomous nervous system. Outside the nervous system, GDNF functions as a morphogen in kidney development and regulates spermatogonial differentiation. GDNF exerts its roles by binding to glial cell line-derived neurotrophic factor receptor (GFR) a1, which forms a heterotetramic complex with rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor. In this study we report the presence of GDNF-, RET- and GFRa1-like immunoreactivity in the pancreas of juvenile trout. GDNF immunoreactivity was observed in the islet cells, while GFRa1- and RET- immunoreactivity was observed in the exocrine portion. These findings suggest a paracrine role of GDNF towards exocrine cells showing GDNF receptors GFRa1 and RET. The relationship could reflect physiological interactions, as previously indicated in mammalian pancreas, and/or a trophic role by endocrine cells on exocrine parenchyma, which shows a conspicuous increase during animal growth.  相似文献   

9.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

10.
The neurotrophic factors that influence the development and function of the parasympathetic branch of the autonomic nervous system are obscure. Recently, neurturin has been found to provide trophic support to neurons of the cranial parasympathetic ganglion. Here we show that GDNF signaling via the RET/GFR(alpha)1 complex is crucial for the development of cranial parasympathetic ganglia including the submandibular, sphenopalatine and otic ganglia. GDNF is required early for proliferation and/or migration of the neuronal precursors for the sphenopalatine and otic ganglia. Neurturin exerts its effect later and is required for further development and maintenance of these neurons. This switch in ligand dependency during development is at least partly governed by the altered expression of GFR(&agr;) receptors, as evidenced by the predominant expression of GFR(&agr;)2 in these neurons after ganglion formation.  相似文献   

11.
The development of the enteric nervous system is dependent upon the actions of glial cell line-derived neurotrophic factor (GDNF) on neural crest-derived precursor cells in the embryonic gut. GDNF treatment of cultured enteric precursor cells leads to an increase in the number of neurons that develop and/or survive. Here we demonstrate that, although GDNF promoted an increase in neuron number at all embryonic ages examined, there was a developmental shift from a mitogenic to a trophic response by the developing enteric neurons. The timing of this shift corresponded to developmental changes in gut expression of GFR alpha-1, a co-receptor in the GDNF-Ret signaling complex. GFR alpha-1 was broadly expressed in the gut at early developmental stages, at which times soluble GFR alpha-1 was released into the medium by cultured gut cells. At later times, GFR alpha-1 became restricted to neural crest-derived cells. GFR alpha-1 could participate in GDNF signaling when expressed in cis on the surface of enteric precursor cells, or as a soluble protein. The GDNF-mediated response was greater when cell surface, compared with soluble, GFR alpha-1 was present, with the maximal response seen the presence of both cis and trans forms of GFR alpha-1. In addition to contributing to GDNF signaling, cell-surface GFR alpha-1 modulated the specificity of interactions between GDNF and soluble GFR alphas. These experiments demonstrate that complex, developmentally regulated, signaling interactions contribute to the GDNF-dependent development of enteric neurons.  相似文献   

12.
The glial-cell-line-derived neurotrophic factor (GDNF) ligand activates the Ret receptor through the assembly of a multiprotein complex, including the GDNF family receptor alpha1 (GFRalpha1) molecule. Given the neuroprotective role of GDNF, there is an obvious need to precisely identify the structural regions engaged in direct interactions between the three molecules. Here, we combined a functional approach for Ret activity (in PC12 cells) to cross-linking experiments followed by MS-MALDI to study the interactions among the purified extracellular region of the human Ret, GDNF and GFRalpha1 molecules. This procedure allowed us to identify distinct regions of Ret that are physically engaged in the interaction with GDNF and GFRalpha1. The lack of these regions in a recombinant Ret form results in the failure of both structural and functional binding of Ret to GFRalpha1/GDNF complex. Furthermore, a model for the assembly of a transducing-competent Ret complex is suggested.  相似文献   

13.
The gonads are known to produce numerous hormones and also neurotrophins and their receptors. Here we demonstrate expression of glial-cell-line-derived neurotrophic factor (GDNF) family ligands and related receptors in adult mice gonads by in situ hybridization. GDNF mRNA was expressed in the ovary, but was not detectable in testis. Neurturin (NTN), another ligand in this family, gave rise to strong mRNA hybridization signals in a mosaic pattern in the seminiferous tubules of the testis at stages IX-XII and I-II of the cycle. NTN mRNA signals were also found in uterus and the oviduct. In testis, the transducing receptor RET as well as GDNF receptor alpha-1 (GFR)alpha-1 and GFRalpha-2 were distributed in complementary and overlapping patterns, the former at stages XI-XII-I and the latter at stages VII and VIII. GFRalpha-3 could not be detected. Expression of these trophic molecules suggests involvement of GDNF family ligands and related receptor components in reproduction.  相似文献   

14.
Two of the glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs), namely GDNF and neurturin (NRTN), are essential neurotropic factors for enteric nerve cells. Signal transduction is mediated by a receptor complex composed of GDNF family receptor alpha 1 (GFRα1) for GDNF or GFRα2 for NRTN, together with the tyrosine kinase receptor RET (rearranged during transfection). As both factors and their receptors are crucial for enteric neuron survival, we assess the site-specific gene expression of these GFLs and their corresponding receptors in human adult colon. Full-thickness colonic specimens were obtained after partial colectomy for non-obstructing colorectal carcinoma. Samples were processed for immunohistochemistry and co-localization studies. Site-specific gene expression was determined by real-time quantitative polymerase chain reaction in enteric ganglia and in circular and longitudinal muscle harvested by microdissection. Protein expression of the receptors was mainly localized in the myenteric and submucosal plexus. Dual-label immunohistochemistry with PGP 9.5 as a pan-neuronal marker detected immunoreactivity of the receptors in neuronal somata and ganglionic neuropil. RET immunoreactivity co-localized with neuronal GFRα1 and GFRα2 signals. The dominant source of receptor mRNA expression was in myenteric ganglia, whereas both GFLs showed higher expression in smooth muscle layers. The distribution and expression pattern of GDNF and NRTN and their corresponding receptors in the human adult enteric nervous system indicate a role of both GFLs not only in development but also in the maintenance of neurons in adulthood. The data also provide a basis for the assessment of disturbed signaling components of the GDNF and NRTN system in enteric neuropathies underlying disorders of gastrointestinal motility.  相似文献   

15.
We have cloned a partial cDNA of chicken glial cell line-derived neurotrophic factor (GDNF) and systematically examined its expression pattern as well as that of GDNF-binding components (GDNF family receptor alpha-1 and 2: GFRalpha-1 and 2) and a common signal transduction receptor (c-ret protooncogene: RET) during very early developmental stages. In addition, we also examined the expression pattern of an apparent avian-specific binding component, GFRalpha-4. The cloned chicken cDNA for GDNF had approximately 80% homology to mammalian counterparts. The expression of GDNF mRNA occurred in many spatially and temporally discrete regions such as the intermediate mesoderm, the floor plate of the spinal cord, pharyngeal endoderm contacting the epibranchial placodes, distal ganglia of cranial nerves, subpopulations of mesenchyme cells in the craniofacial region, and in the mesodermal wall of the digestive tract. Both a GDNF receptor signal transduction component (RET) and a binding component (GFRalpha-1 or GFRalpha-2) were independently expressed in nearby interacting tissues such as the somites, peripheral and central nervous system, and mesenchyme cells in the craniofacial region. These observations suggest that possible combinations of novel unidentified receptors acting with RET or with GFRalphas may mediate GDNF-derived signals and indicate that GDNF or other family members may have previously unidentified actions in early organogenesis in the chick embryo.  相似文献   

16.
Ligand-induced receptor oligomerization is a widely accepted mechanism for activation of cell-surface receptors. We investigated ligand-receptor interactions in the glial cell-line derived neurotrophic factor (GDNF) receptor complex, formed by the c-Ret receptor tyrosine kinase and the glycosylphosphatidylinositol (GPI)-anchored subunit GDNF family receptor alpha-1 (GFRalpha1). As only GFRalpha1 can bind GDNF directly, receptor complex formation is thought to be initiated by GDNF binding to this receptor. Here we identify an interface in GDNF formed by exposed acidic and hydrophobic residues that is critical for binding to GFRalpha1. Unexpectedly, several GDNF mutants deficient in GFRalpha1 binding retained the ability to bind and activate c-Ret at normal levels. Although impaired in binding GFRalpha1 efficiently, these mutants still required GFRalpha1 for c-Ret activation. These findings support a role for c-Ret in ligand binding and indicate that GDNF does not initiate receptor complex formation, but rather interacts with a pre-assembled GFRalpha1- c-Ret complex.  相似文献   

17.
The glial cell line-derived neurotrophic factor (GDNF) family coreceptor alpha1 (GFRalpha1) is a critical component of the RET receptor kinase signal-transducing complex. The activity of this multicomponent receptor is stimulated by the glial cell line-derived neurotrophic factor (GDNF) and is involved in neuronal cells survival and kidney development. GFRalpha1 pre-mRNA is alternatively spliced and produces two isoforms: GFRalpha1a, which includes the exon 5; and GFRalpha1b, which excludes it. Here we show that the Gfralpha1a isoform is predominantly expressed in neuronal tissues and in PC12 cells differentiated toward a neuronal phenotype. GFRalpha1 splicing is also regulated during kidney development, GFRalpha1a is the minor isoform before birth and then rapidly becomes the major form after birth. We established cell lines expressing either GFRalpha1 isoforms and demonstrated that the GFRalpha1b isoform binds GDNF more efficiently than GFRalpha1a. Consistently, GFRalpha1b promotes a stronger RET phosphorylation than GFRalpha1a. These results indicate that specific inclusion of the GFRalpha1 exon 5 in neuronal tissues or during kidney development may alter the binding properties of GDNF to GFRalpha1, and thus could constitute an additional regulatory mechanism of the RET signaling pathway.  相似文献   

18.
The GDNF/RET signaling pathway and human diseases   总被引:16,自引:0,他引:16  
Glial cell line-derived neurotrophic factor (GDNF) and related molecules, neurturin, artemin and persephin, signal through a unique multicomponent receptor system consisting of RET tyrosine kinase and glycosyl-phosphatidylinositol-anchored coreceptor (GFR1–4). These neurotrophic factors promote the survival of various neurons including peripheral autonomic and sensory neurons as well as central motor and dopamine neurons, and have been expected as therapeutic agents for neurodegenerative diseases. In addition, it turned out that the GDNF/RET signaling plays a crucial role in renal development and regulation of spermatogonia differentiation. RET mutations cause several human diseases such as papillary thyroid carcinoma, multiple endocrine neoplasia types 2A and 2B, and Hirschsprung's disease. The mutations resulted in RET activation or inactivation by various mechanisms and the biological properties of mutant proteins appeared to be correlated with disease phenotypes. The signaling pathways activated by GDNF or mutant RET are being extensively investigated to understand the molecular mechanisms of disease development and the physiological roles of the GDNF family ligands.  相似文献   

19.
Gale Z  Cooper PR  Scheven BA 《Cytokine》2012,57(2):276-281
Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.  相似文献   

20.
To clarify whether glial cell line-derived neurotrophic factor (GDNF) receptor alpha-1 (GFRalpha1), the glycosylphosphatidylinositol (GPI)-linked coreceptor for GDNF, is also a functional coreceptor for artemin (ART), we have studied receptor binding, signaling, and neuronal survival. In cell-free binding studies, GFRalpha1-Ig displayed strong preferential binding to GDNF, though in the presence of soluble RET, weak binding to ART could also be detected. However, using GFRalpha1-transfected NB41A3 cells, ART showed no detectable competition against the binding of (125)I-labeled GDNF. Moreover, ART failed to induce phosphorylation of extracellular signal-related kinase (ERK) and Akt in these cells and was >10(4)-fold less potent than GDNF in stimulating RET phosphorylation. When rat primary dorsal root ganglion (DRG) neurons were used, only the survival promoting activity of GDNF and not that of ART was blocked by an anti-GFRalpha1 antibody. These results indicate that although ART can interact weakly with soluble GFRalpha1 constructs under certain circumstances in vitro, in cell-based functional assays GFRalpha1 is at least 10 000-fold selective for GDNF over ART. The extremely high selectivity of GFRalpha1 for GDNF over ART and the low reactivity of ART for this receptor suggest that GFRalpha1 is not likely to be a functional coreceptor for ART in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号