首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During initiation, the ribosome is tasked to efficiently recognize open reading frames (ORFs) for accurate and fast translation of mRNAs. A critical step is start codon recognition, which is modulated by initiation factors, mRNA structure, a Shine Dalgarno (SD) sequence and the start codon itself. Within the Escherichia coli genome, we identified more than 50 annotated initiation sites harboring AUGUG or GUGUG sequence motifs that provide two canonical start codons, AUG and GUG, in immediate proximity. As these sites may challenge start codon recognition, we studied if and how the ribosome is accurately guided to the designated ORF, with a special focus on the SD sequence as well as adenine at the fourth coding sequence position (A4). By in vitro and in vivo experiments, we characterized key requirements for unambiguous start codon recognition, but also discovered initiation sites that lead to the translation of both overlapping reading frames. Our findings corroborate the existence of an ambiguous translation initiation mechanism, implicating a multitude of so far unrecognized ORFs and translation products in bacteria.  相似文献   

2.
3.
4.
The mechanism by which miRNAs inhibit translation has been under scrutiny both in vivo and in vitro. Divergent results have led to the suggestion that miRNAs repress translation by a variety of mechanisms including blocking the function of the cap in stimulating translation. However, these analyses largely only examine the final output of the multistep process of translation. This raises the possibility that when different steps in translation are rate limiting, miRNAs might show different effects on protein production. To examine this possibility, we modeled the process of translation initiation and examined how the effects of miRNAs under different conditions might be explained. Our results suggest that different effects of miRNAs on protein production in separate experiments could be due to differences in rate-limiting steps. This analysis does not rule out that miRNAs directly repress the function of the cap structure, but it demonstrates that the observations used to argue for this effect are open to alternative interpretations. Taking all the data together, our analysis is consistent with the model that miRNAs may primarily repress translation initiation at a late step.  相似文献   

5.
6.
7.
8.
Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during sec-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the "mature" portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells.  相似文献   

9.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex scans the mRNA in search of an AUG codon at which to begin translation. Start codon recognition halts scanning and triggers a number of events that commit the complex to beginning translation at that point on the mRNA. Previous studies in vitro and in vivo have indicated that eukaryotic initiation factors (eIFs) 1, 2 and 5 play key roles in these events. In addition, it was reported recently that the C-terminal domain of eIF1A is involved in maintaining the fidelity of start codon recognition. The molecular mechanisms by which these factors work together to ensure fidelity of start site selection remain poorly understood. Here, we report the quantitative characterization of energetic interactions between eIF1A, eIF5 and the AUG codon in an in vitro reconstituted yeast translation initiation system. Our results show that recognition of an AUG codon by the 43 S complex triggers an interaction between eIF5 and eIF1A, resulting in a shift in the equilibrium between two states of the pre-initiation complex. This AUG-dependent change may be a reorganization from a scanning-competent state to a scanning-incompetent state. Mutations in both eIF1A and eIF5 that increase initiation at non-AUG codons in vivo weaken the interaction between the two factors upon AUG recognition, while specifically strengthening it in response to a UUG codon. These data suggest strongly that the interaction between eIF1A and eIF5 is involved in maintaining the fidelity of start codon recognition in vivo.  相似文献   

10.
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES.  相似文献   

11.
Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture.  相似文献   

12.
Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5′ end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.  相似文献   

13.
Chemokines are small secreted proteins with important roles in immune responses. They consist of a conserved three-dimensional (3D) structure, so-called IL8-like chemokine fold, which is supported by disulfide bridges characteristic of this protein family. Sequence- and profile-based computational methods have been proficient in discovering novel chemokines by making use of their sequence-conserved cysteine patterns. However, it has been recently shown that some chemokines escaped annotation by these methods due to low sequence similarity to known chemokines and to different arrangement of cysteines in sequence and in 3D. Innovative methods overcoming the limitations of current techniques may allow the discovery of new remote homologs in the still functionally uncharacterized fraction of the human genome. We report a novel computational approach for proteome-wide identification of remote homologs of the chemokine family that uses fold recognition techniques in combination with a scaffold-based automatic mapping of disulfide bonds to define a 3D profile of the chemokine protein family. By applying our methodology to all currently uncharacterized human protein sequences, we have discovered two novel proteins that, without having significant sequence similarity to known chemokines or characteristic cysteine patterns, show strong structural resemblance to known anti-HIV chemokines. Detailed computational analysis and experimental structural investigations based on mass spectrometry and circular dichroism support our structural predictions and highlight several other chemokine-like features. The results obtained support their functional annotation as putative novel chemokines and encourage further experimental characterization. The identification of remote homologs of human chemokines may provide new insights into the molecular mechanisms causing pathologies such as cancer or AIDS, and may contribute to the development of novel treatments. Besides, the genome-wide applicability of our methodology based on 3D protein family profiles may open up new possibilities for improving and accelerating protein function annotation processes.  相似文献   

14.
During eukaryotic translation initiation, ribosomal 43S complexes scan mRNAs for the correct AUG codon at which to begin translation. Start codon recognition triggers GTP hydrolysis, committing the complex to engagement at that point on the mRNA. While fidelity at this step is essential, the nature of the codon recognition event and the mechanism by which it activates GTP hydrolysis are poorly understood. Here we report the changes that occur within the 43S.mRNA complex in response to AUG codon recognition. eIF1 and eIF1A are key players in assembly of 43S.mRNA complexes capable of locating initiation codons. We observed FRET between these two factors when bound to the 40S subunit. Using steady-state FRET, anisotropy, and kinetic analyses, we demonstrate that start codon recognition results in a conformational change and release of eIF1 from the ribosome. These rearrangements probably play a role in triggering GTP hydrolysis and committing the complex to downstream events.  相似文献   

15.
Initiation of translation on picornavirus RNAs is accomplished through internal binding of ribosomes to a complex cis-acting element. Here we show that efficient function of this element involves two appropriately spaced smaller elements: UUUCC and an AUG. This conclusion emerged from analysis of the genome structures of spontaneous revertants of mutant polioviruses with extended insertions between the UUUCC and AUG motifs. It was confirmed by the results obtained with specially designed constructs. A similarity to the prokaryotic translation initiation mechanism, which involves the Shine-Dalgarno sequence, is emphasized, but in the picornavirus system the position of the UUUCC must be strictly fixed relative to upstream cis-acting elements, and the AUG may not necessarily serve as an initiation codon.  相似文献   

16.
We developed a computer program, GeneHackerTL, which predictsthe most probable translation initiation site for a given nucleotidesequence. The program requires that information be extractedfrom the nucleotide sequence data surrounding the translationinitiation sites according to the framework of the Hidden MarkovModel. Since the translation initiation sites of 72 highly abundantproteins have already been assigned on the genome of Synechocystissp. strain PCC6803 by amino-terminal analysis, we extractednecessary information for GeneHackerTL from the nucleotide sequencedata. The prediction rate of the GeneHackerTL for these proteinswas estimated to be 86.1%. We then used GeneHackerTL for predictionof the translation initiation sites of 24 other proteins, ofwhich the initiation sites were not assigned experimentally,because of the lack of a potential initiation codon at the amino-terminalposition. For 20 out of the 24 proteins, the initiation siteswere predicted in the upstream of their amino-terminal positions.According to this assignment, the processed regions representa typical feature of signal peptides. We could also predictmultiple translation initiation sites for a particular genefor which at least two initiation sites were experimentallydetected. This program would be e.ective for the predictionof translation initiationsites of other proteins, not only inthis species but also in other prokaryotes as well.  相似文献   

17.
18.
We describe a novel experimental approach to investigate mRNA translation. Antisense 2'-O-allyl oligoribonucleotides (oligos) efficiently arrest translation of targeted mRNAs in rabbit reticulocyte lysate and wheat germ extract while displaying minimal non-specific effects on translation. Oligo/mRNA-hybrids positioned anywhere within the 5' UTR or the first approximately 20 nucleotides of the open reading frame block cap-dependent translation initiation with high specificity. The thermodynamic stability of hybrids between 2'-O-alkyl oligos and RNA permits translational inhibition with oligos as short as 10 nucleotides. This inhibition is independent of RNase H cleavage or modifications which render the mRNA untranslatable. We show that 2'-O-alkyl oligos can also be employed to interfere with cap-independent internal initiation of translation and to arrest translation elongation. The latter is accomplished by UV-crosslinking of psoralen-tagged 2'-O-methyloligoribonucleotides to the mRNA within the open reading frame. The utility of 2'-O-alkyloligoribonucleotides to arrest translation from defined positions within an mRNA provides new approaches to investigate mRNA translation.  相似文献   

19.
Molecular recognition of RNA structure is key to innate immunity. The protein kinase PKR differentiates self from non-self by recognition of molecular patterns in RNA. Certain biological RNAs induce autophosphorylation of PKR, activating it to phosphorylate eukaryotic initiation factor 2α (eIF2α), which leads to inhibition of translation. Additional biological RNAs inhibit PKR, while still others have no effect. The aim of this article is to develop a cohesive framework for understanding and predicting PKR function in the context of diverse RNA structure. We present effects of recently characterized viral and cellular RNAs on regulation of PKR, as well as siRNAs. A central conclusion is that assembly of accessible long double-stranded RNA (dsRNA) elements within biological RNAs plays a key role in regulation of PKR kinase. Strategies for forming such elements include RNA dimerization, formation of symmetrical helical defects, A-form dsRNA mimicry, and coaxial stacking of helices.  相似文献   

20.
We have constructed retroviral expression vectors by manipulation of the Moloney murine leukemia virus genome such that an exogenous DNA sequence may be inserted and subsequently expressed when introduced into mammalian cells. A series of N-terminal deletions of the v-mos oncogene was constructed and assayed for biological activity with these retroviral expression vectors. The results of the deletion analysis demonstrate that the region of p37mos coding region upstream of the third methionine codon is dispensable with respect to transformation. However, deletion mutants of v-mos which allow initiation of translation at the fourth methionine codon have lost the biological activity of the parental v-mos gene. Furthermore, experiments were also carried out to define the C-terminal limit of the active region of p37mos by the construction of premature termination mutants by the insertion of a termination oligonucleotide. Insertion of the oligonucleotide just 69 base pairs upstream from the wild-type termination site abolished the focus-forming ability of v-mos. Thus, we have shown the N-terminal limit of the active region of p37mos to be between the third and fourth methionines, while the C-terminal limit is within the last 23 amino acids of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号