首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of uropathogenic Escherichia coli to the urothelial surface is a critical initial event for establishing urinary tract infection, because it prevents the bacteria from being removed by micturition and it triggers bacterial invasion as well as host cell defense. This binding is mediated by the FimH adhesin located at the tip of the bacterial type 1-fimbrium and its urothelial receptor, uroplakin Ia (UPIa). To localize the UPIa receptor on the 16 nm particles that form two-dimensional crystals of asymmetric unit membrane (AUM) covering >90 % of the apical urothelial surface, we constructed a 15 A resolution 3-D model of the mouse 16 nm AUM particle by negative staining and electron crystallography. Similar to previous lower-resolution models of bovine and pig AUM particles, the mouse 16 nm AUM particle consists of six inner and six outer domains that are interconnected to form a twisted ribbon-like structure. Treatment of urothelial plaques with 0.02-0.1 % (v/v) Triton X-100 allowed the stain to penetrate into the membrane, revealing parts of the uroplakin transmembrane moiety with an overall diameter of 14 nm, which was much bigger than the 11 nm value determined earlier by quick-freeze deep-etch. Atomic force microscopy of native, unfixed mouse and bovine urothelial plaques confirmed the overall structure of the luminal 16 nm AUM particle that was raised by 6.5 nm above the luminal membrane surface and, in addition, revealed a circular, 0.5 nm high, cytoplasmic protrusion of approximately 14 nm diameter. Finally, a difference map calculated from the mouse urothelial plaque images collected in the presence and absence of recombinant bacterial FimH/FimC complex revealed the selective binding of FimH to the six inner domains of the 16 nm AUM particle. These results indicate that the 16 nm AUM particle is anchored by a approximately 14 nm diameter transmembrane stalk, and suggest that bacterial binding to UPIa that resides within the six inner domains of the 16 nm AUM particle may preferentially trigger transmembrane signaling involved in bacterial invasion and host cell defense.  相似文献   

2.
The luminal surface of mammalian urothelium is covered with numerous plaques (also known as the asymmetric unit membrane or AUM) composed of semi-crystalline, hexagonal arrays of 12-nm protein particles. Despite the presumed importance of these plaques in stabilizing the urothelial surface during bladder distention, relatively little is known about their protein composition. Using a mouse mAb, AE31, we have identified a 27-kD protein that is urothelium-specific and is differentially expressed in superficial umbrella cells. This protein (pI approximately 5.8) partitions into the detergent phase during Triton X-114 phase separation. Pulse-chase experiments using cultured bovine urothelial cells showed that this protein is synthesized as a 32-kD precursor that is processed through a 30-kD intermediate, to the mature 27-kD form. In cytoplasmic vesicles containing immature AUM, the AE31 epitope is detected in patches on the cytoplasmic side, but in mature, apical AUM it is detected exclusively on the luminal side. This suggests an unusual translocation of the AE31 epitope during AUM maturation; more data are required, however, to substantiate this interpretation. Immunoaffinity purification of the 27-kD protein results in the copurification in approximately molar ratio of a 15-kD protein, as well as a small and variable amount of a 47-kD protein. Immunoblotting data indicate that these three proteins are immunologically distinguishable. This copurified 15-kD protein is relative basic (pI approximately 8.0). Like the 27-kD protein, it is urothelium-specific and is present mainly in the umbrella cells. Together, our data indicate that a 27-kD protein is urothelial plaque-associated (uroplakin I). Based on complex formation data, we provisionally name the 15-kD protein uroplakin II; additional data will be required to determine whether this and the 47-kD protein are integral parts of AUM. The identification of these AUM-associated and -related proteins, plus the availability of a culture system capable of synthesizing and processing some of these molecules, offer new opportunities for studying the detailed structure, assembly, and function of asymmetrical unit membrane.  相似文献   

3.
The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.  相似文献   

4.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

5.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

6.
The differentiation of mammalian urothelium culminates in the formation of asymmetrical unit membrane (AUM). Using gradient centrifugation and detergent wash, we purified milligram quantities of AUMs which, interestingly, contained three major proteins (15, 27, and 47 kDa) that appeared to be identical to the three immunoaffinity purified, putatively AUM-associated proteins that we described earlier (Yu, J., Manabe, M., Wu, X.-R., Xu, C., Surya, B., and Sun, T.-T. (1990) J. Cell Biol., 111, 1207-1216). Peptide mapping and immunoblotting established that these three proteins were distinct molecules. Using monospecific antibodies to these three proteins, we showed that they were all restricted to the superficial urothelial cells and were AUM-associated. The 27- and 15-kDa proteins were detected exclusively on the luminal side of mature, apical AUMs. In contrast, epitopes of the 47-kDa protein were detected on both sides of apical AUMs suggesting a transmembranous configuration. These results (i) provide the strongest evidence thus far that AUM contains three major proteins (the 27-kDa uroplakin I, 15-kDa uroplakin II, and 47-kDa uroplakin III) which form an extremely insoluble complex, (ii) suggest that uroplakin II, like uroplakin I (Yu, J., Manabe, M., Wu, X.-R., Xu, C., Surya, B., and Sun, T.-T. (1990) J. Cell. Biol. 111, 1207-1216), translocates from one side of the membrane to another during AUM maturation, (iii) indicate that uroplakin III may play a different structural role than uroplakins I and II in AUM formation, and (iv) establish the three uroplakins as markers for an advanced stage of urothelial differentiation.  相似文献   

7.
Formation of asymmetric unit membrane during urothelial differentiation   总被引:4,自引:0,他引:4  
Mammalian urothelium undergoes unique membrane specialization during terminal differentiation making numerous rigid-looking membrane plaques (0.3–0.5 m diameter) that cover the apical cell surface. The outer leaflet of these membrane plaques is almost twice as thick as the inner leaflet hence the name asymmetric unit membrane (AUM). Ultrastructural studies established that the outer leaflet of AUM is composed of 16 nm particles forming two dimensional crystals, and that each particle forms a twisted ribbon structure. We showed recently that highly purified bovine AUMs contain four major integral membrane proteins: uroplakins Ia (27 kD), Ib (28 kD), II (15 kD) and III (47 kD). Studies of the protease sensitivity of the different subdomains of uroplakins and other considerations suggest that UPIa and UPIb have 4 transmembrane domains, while UPII and UPIII have only one transmembrane domain. Chemical Crosslinking studies showed that UPIa and UPIb, which share 39% amino acid sequence, are topologically adjacent to UPII and UPIII, respectively, thus raising the possibility that there exist two biochemically distinct AUM particles, i.e., those containing UPIa/UPII vs. UPIb/UPIII. Bovine urothelial cells grown in the presence of 3T3 feeder cells undergo clonal growth forming stratified colonies capable of synthesizing and processing all known uroplakins. Transgenic mouse studies showed that a 3.6 kb 5-flanking sequence of mouse uroplakin II gene can drive the expression of bacterial LacZ gene to express in the urothelium. Further studies on the biosynthesis, assembly and targeting of uroplakins will offer unique opportunities for better understanding the structure and function of AUM as well as the biology of mammalian urothelium.  相似文献   

8.
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.  相似文献   

9.
The apical plasma membrane of differentiated superficial urothelial cells is characterised by the presence of asymmetric unit membrane (AUM). Cyclophosphamide (CP) metabolites cause perforation of these thickened membranes. In this study, apical plasma membranes were examined after CP injection by electron microscopy. The immediate effect of the CP metabolites was observed as small round holes appearing, first in the asymmetric apical plasma membrane of terminally differentiated superficial cells, and later in the symmetric apical plasma membrane of exposed undifferentiated intermediate and basal cells. Exposed cells which remained undamaged, immediately underwent maturation of the symmetric apical plasma membrane. These results indicate that CP metabolites perforate the symmetric and asymmetric membranes of most urothelial cells.  相似文献   

10.
The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of AUM is composed of crystalline patches of 12- nm protein particles, and that bovine AUMs contain three major proteins: the 27- to 28-kD uroplakin I, the 15-kD uroplakin II and the 47-kD uroplakin III. As a step towards elucidating the AUM structure and function, we have cloned the cDNAs of bovine uroplakin I (UPI). Our results established the existence of two isoforms of bovine uroplakin I: a 27-kD uroplakin Ia and a 28-kD uroplakin Ib. These two glycoproteins are closely related with 39% identity in their amino acid sequences. Hydropathy plot revealed that both have four potential transmembrane domains (TMDs) with connecting loops of similar length. Proteolytic digestion of UPIa inserted in vitro into microsomal vesicles suggested that its two main hydrophilic loops are exposed to the luminal space, possibly involved in interacting with the luminal domains of other uroplakins to form the 12-nm protein particles. The larger loop connecting TMD3 and TMD4 of both UPIa and UPIb contains six highly conserved cysteine residues; at least one centrally located cysteine doublet in UPIa is involved in forming intramolecular disulfide bridges. The sequences of UPIa and UPIb (the latter is almost identical to a hypothetical, TGF beta-inducible, TI-1 protein of mink lung epithelial cells) are homologous to members of a recently described family all possessing four transmembrane domains (the "4TM family"); members of this family include many important leukocyte differentiation markers such as CD9, CD37, CD53, and CD63. The tissue- specific and differentiation-dependent expression as well as the naturally occurring crystalline state of uroplakin I molecules make them uniquely suitable, as prototype members of the 4TM family, for studying the structure and function of these integral membrane proteins.  相似文献   

11.
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.  相似文献   

12.
The purpose of this study was to establish an in vitro culture model that closely resembles whole mouse urothelial tissue. Primary explant cultures of mouse bladder were established on porous membrane supports and explant outgrowths were analysed for morphology and the presence of antigenic and ultrastructural markers associated with urothelial cytodifferentiation. When examined at the ultrastructural level, the cultured urothelium was polarized and organized as a multilayered epithelium. Differentiation was found to increase from the porous membrane towards the surface and from the explant towards the periphery of the culture. Scanning and transmission electron microscopical analysis of the most superficially-located cells revealed four successive differentiation stages: cells with microvilli, cells with ropy microridges, cells with rounded microridges, and highly-differentiated cells with asymmetric unit membrane (AUM) plaques forming rigid microridges and fusiform vesicles. The more highly-differentiated cells were numerous at the periphery of the culture, but rare close to the explant. Epithelial organization was stabilized by well developed cell junctions. Immunolabeling demonstrated that superficial urothelial cells in culture: (1) develop tight junctions, E-cadherin adherens junctions and abundant desmosomes and (2) express uroplakins and cytokeratin 20 (CK 20). Using a culture model of primary explant outgrowth we have shown that non-differentiated mouse urothelial cells growing on a porous membrane show a high level of de novo differentiation.  相似文献   

13.
The apical surface of mammalian urothelium is covered by 16-nm protein particles packed hexagonally to form 2D crystals of asymmetric unit membranes (AUM) that contribute to the remarkable permeability barrier function of the urinary bladder. We have shown previously that bovine AUMs contain four major integral membrane proteins, i.e., uroplakins Ia, Ib, II, and IIIa, and that UPIa and Ib (both tetraspanins) form heterodimers with UPII and IIIa, respectively. Using a panel of antibodies recognizing different conformational states of uroplakins, we demonstrate that the UPIa-dependent, furin-mediated cleavage of the prosequence of UPII leads to global conformational changes in mature UPII and that UPIb also induces conformational changes in its partner UPIIIa. We further demonstrate that tetraspanins CD9, CD81, and CD82 can stabilize their partner protein CD4. These results indicate that tetraspanin uroplakins, and some other tetraspanin proteins, can induce conformational changes leading to the ER-exit, stabilization, and cell surface expression of their associated, single-transmembrane-domained partner proteins and thus can function as "maturation-facilitators." We propose a model of AUM assembly in which conformational changes in integral membrane proteins induced by uroplakin interactions, differentiation-dependent glycosylation, and the removal of the prosequence of UPII play roles in regulating the assembly of uroplakins to form AUM.  相似文献   

14.
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 μm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.  相似文献   

15.
Urothelium synthesizes a group of integral membrane proteins called uroplakins, which form two-dimensional crystals (urothelial plaques) covering >90% of the apical urothelial surface. We show that the ablation of the mouse uroplakin III (UPIII) gene leads to overexpression, defective glycosylation, and abnormal targeting of uroplakin Ib, the presumed partner of UPIII. The UPIII-depleted urothelium features small plaques, becomes leaky, and has enlarged ureteral orifices resulting in the back flow of urine, hydronephrosis, and altered renal function indicators. Thus, UPIII is an integral subunit of the urothelial plaque and contributes to the permeability barrier function of the urothelium, and UPIII deficiency can lead to global anomalies in the urinary tract. The ablation of a single urothelial-specific gene can therefore cause primary vesicoureteral reflux (VUR), a hereditary disease affecting approximately 1% of pregnancies and representing a leading cause of renal failure in infants. The fact that VUR caused by UPIII deletion seems distinct from that caused by the deletion of angiotensin receptor II gene suggests the existence of VUR subtypes. Mutations in multiple gene, including some that are urothelial specific, may therefore cause different subtypes of primary reflux. Studies of VUR in animal models caused by well-defined genetic defects should lead to improved molecular classification, prenatal diagnosis, and therapy of this important hereditary problem.  相似文献   

16.
ME Kreft  H Robenek 《PloS one》2012,7(6):e38509
The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research.  相似文献   

17.
In the present investigation an analysis has been made of the fine structure of the interrelationships of cells in human forearm epidermis by means of the electron microscope. The "intercellular bridges," here called attachment zones, are more complex than has previously been recognized. It is shown that dense oval thickenings, called attachment plaques, appear in apposed areas of adjacent epidermal cell membranes. The tonofibrils terminate at the internal face of the attachment plaque and do not traverse the 300 A distance between apposed plaques. Seven intervening layers of unidentified substance occupy the space between attachment plaques. The attachment zones appear in all of the classical histological layers of the epidermis. The portions of epidermal cell membrane not involved in intercellular attachments have extensive surface area resulting from plication of the membrane, and its further modification to form microvilli. The possible functional significance of these observations is discussed. Prior observations concerning the basement membrane of epidermis are confirmed. Identification of epidermal melanocytes is achieved, the finer morphology of their dendritic processes is described, and their relationship to epidermal cells is discussed.  相似文献   

18.
To determine the three-dimensional structure of the lumenal membrane of transitional epithelium, a study was made of sectioned, negatively stained, and freeze-etched specimens from intact epithelium and membrane fractions from rabbit urinary bladder. Particulate membrane components are confined to plaque regions within which the unit membrane is asymmetric, having a thicker outer leaflet. Transversely fractured freeze-etched plaques display a thick (~80 A), particulate lumenal leaflet and a thin (~40 A) cytoplasmic one. Four different faces of the two leaflets can be distinguished: two complementary, split, inner membrane faces exposed by freeze-cleaving the bilayer and two external (lumenal and cytoplasmic) membrane surfaces revealed by deep-etching. On the split, inner face of the lumenal leaflet appear polygonal plaques of hexagonally arranged particles. These fit into holes observed on the complementary, split, innerface of the cytoplasmic leaflet. The particles, which have a center-to-center spacing of ~160 A, also seem to protrude from the external surface of the lumenal leaflet, where their subunits (~50 A in diameter) are revealed by freeze-etching and negative staining. The plaques are separated from each other by smooth-surfaced regions, which cleave like simple lipid bilayers. Since the array of plaque particles covers only ~73% of the membrane surface area, whereas 27% is taken up by particle-free interplaque regions, the presence of particles cannot in itself entirely account for the permeability barrier of the lumenal membrane. Although no particles are observed protruding from the cytoplasmic surface of the membrane, cytoplasmic filaments are attached to it by short, cross-bridge-like filaments that seem to contact the particles within the membrane. These long cytoplasmic filaments cross-link adjacent plaques. Therefore, we suggest that at least one function of the particles is to serve as anchoring sites for cytoplasmic filaments, which limit the expansion of the lumenal membrane during distention of the bladder, thereby preventing it from rupturing. The particle-free interplaque regions probably function as hinge areas between the stiff plaques, allowing the membrane to fold up when the bladder is contracted.  相似文献   

19.
The apical surface of mouse urothelium is covered by two-dimensional crystals (plaques) of uroplakin (UP) particles. To study uroplakin function, we ablated the mouse UPII gene. A comparison of the phenotypes of UPII- and UPIII-deficient mice yielded new insights into the mechanism of plaque formation and some fundamental features of urothelial differentiation. Although UPIII knockout yielded small plaques, UPII knockout abolished plaque formation, indicating that both uroplakin heterodimers (UPIa/II and UPIb/III or IIIb) are required for plaque assembly. Both knockouts had elevated UPIb gene expression, suggesting that this is a general response to defective plaque assembly. Both knockouts also had small superficial cells, suggesting that continued fusion of uroplakin-delivering vesicles with the apical surface may contribute to umbrella cell enlargement. Both knockouts experienced vesicoureteral reflux, hydronephrosis, renal dysfunction, and, in the offspring of some breeding pairs, renal failure and neonatal death. These results highlight the functional importance of uroplakins and establish uroplakin defects as a possible cause of major urinary tract anomalies and death.  相似文献   

20.
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号