首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.  相似文献   

2.
This contribution stems from the personal experience of the author regarding how he became acquainted with embryology and how he finally entered the field of developmental biology. It reports his feelings as a student of the Histology and Embryology course as it was taught in the late 1970s, and his present efforts in teaching developmental biology to university students. In the Developmental Biology course at Pisa University today, students are taught the tissue, molecular and genetic mechanisms that regulate development of several model systems. Drosophila is introduced at the beginning, because of the great knowledge that it has brought to the unraveling of the molecular aspects of development and because it allows several basic concepts to be introduced, and vertebrate systems follow. Other topics include the classic experiments on amphibian systems, which are explained in the light of recent molecular advances, as well as the genetically more versatile vertebrate systems such as the mouse.  相似文献   

3.
The introduction of novel biochemical, genetic, molecular and cell biology tools to the study of insect immunity has generated an information explosion in recent years. Due to the biodiversity of insects, complementary model systems have been developed. The conceptual framework built based on these systems is used to discuss our current understanding of mosquito immune responses and their implications for malaria transmission. The areas of insect and vertebrate innate immunity are merging as new information confirms the remarkable extent of the evolutionary conservation, at a molecular level, in the signaling pathways mediating these responses in such distant species. Our current understanding of the molecular language that allows the vertebrate innate immune system to identify parasites, such as malaria, and direct the acquired immune system to mount a protective immune response is very limited. Insect vectors of parasitic diseases, such as mosquitoes, could represent excellent models to understand the molecular responses of epithelial cells to parasite invasion. This information could broaden our understanding of vertebrate responses to parasitic infection and could have extensive implications for anti-malarial vaccine development.  相似文献   

4.
5.
Ascidians are lower chordates that possess a possible prototype of the vertebrate nervous system. The central and peripheral nervous systems of ascidian larvae are composed of only a few hundred cells (Nicol and Meinertzhagen, 1991). To investigate how these ascidian nervous systems develop, dissection at the molecular level using subset-specific markers is essential. Here we describe four new genes zygotically expressed in subsets of the ascidian neural cells. The spatial expression domains of these genes overlap in some parts but not in other parts of the nervous systems. Our results suggest that there are functionally different regions in the nervous systems owing to the gene expression differences. Further analyses of these genes will enable us to determine the molecular neuro-developmental characteristics of various clusters of neural cells.  相似文献   

6.
During vertebrate embryonic development, the endothelial and hemopoietic systems are the first system to be specified. In this review, we will summarize recent findings about the molecular mechanisms responsible for the successive steps of the development of these systems: the differentiation of mesodermal cells to endothelial and hemopoietic cells, their proliferation and their interactions to form the vascular system.  相似文献   

7.
8.
Forebrain neurosecretory systems are widespread in the animal kingdom. This review focuses on recent molecular data from protostomes, discusses the original complexity of the bilaterian forebrain neurosecretory system, provides an evolutionary scenario for the emergence of the vertebrate preoptic area/hypothalamus/neurohypophysis and suggests a possible function for an ancient set of sensory-neurosecretory cells present in the medial neurosecretory bilaterian forebrain.  相似文献   

9.
The large daily rhythm in circulating melatonin levels is a highly conserved feature of vertebrate physiology: high values always occur at night. The dynamics of the rhythm are controlled by the next-to-last enzyme in melatonin synthesis (serotonin --> N-acetylserotonin --> melatonin), arylalkylamine N-acetyltransferase (AANAT), the "melatonin rhythm enzyme". In vertebrate biology, AANAT plays a unique time-keeping role as the molecular interface between the environment and the hormonal signal of time, melatonin. This chapter describes the mammalian AANAT regulatory system, which includes the retina, neural structures, transsynaptic processes, and molecular events. In addition, special attention is paid to the functional characteristics of the systems which insure that the nocturnal increase in melatonin is an accurate and reliable indicator of the duration of the night, and why the melatonin rhythm is the most reliable output signal of the Mind's Clock.  相似文献   

10.
Cell junctions and the extracellular matrix (ECM) are crucial components in intercellular communication. These systems are thought to have become highly diversified during the course of vertebrate evolution. In the present study, we have examined whether the ancestral chordate already had such vertebrate systems for intercellular communication, for which we have searched the genome of the ascidian Ciona intestinalis. From this molecular perspective, the Ciona genome contains genes that encode protein components of tight junctions, hemidesmosomes and connexin-based gap junctions, as well as of adherens junctions and focal adhesions, but it does not have those for desmosomes. The latter omission is curious, and the ascidian type-I cadherins may represent an ancestral form of the vertebrate type-I cadherins and desmosomal cadherins, while Ci-Plakin may represent an ancestral protein of the vertebrate desmoplakins and plectins. If this is the case, then ascidians may have retained ancestral desmosome-like structures, as suggested by previous electron-microscopic observations. In addition, ECM genes that have been regarded as vertebrate-specific were also found in the Ciona genome. These results suggest that the last common ancestor shared by ascidians and vertebrates, the ancestor of the entire chordate clade, had essentially the same systems of cell junctions as those in extant vertebrates. However, the number of such genes for each family in the Ciona genome is far smaller than that in vertebrate genomes. In vertebrates these ancestral cell junctions appear to have evolved into more diverse, and possibly more complex, forms, compared with those in their urochordate siblings.  相似文献   

11.
J A King  R P Millar 《Peptides》1985,6(4):689-694
Gonadotropin-releasing hormone (GnRH) immunoreactive peptides in extracts of hake (Merluccius capensis) and tilapia (Tilapia sparrmanii) brain were investigated by high performance liquid chromatography (HPLC) and radioimmunoassay with region-specific antisera. In hake brain, content and concentration of GnRH was higher in the pituitary gland than in the hypothalamic lobes or extrahypothalamic brain. Hake pituitary gland GnRH was purified by six consecutive HPLC systems. The major GnRH molecular form co-eluted with salmon brain GnRH (Trp7, Leu8-GnRH) in four different HPLC systems which were specifically designed to separate the four natural vertebrate GnRHs (mammalian, salmon, chicken I and II). The immunoreactive peak in the final purification step had a retention time identical to that of Trp7, Leu8-GnRH and an UV absorbance (280 nm) peak appropriate for two tryptophan residues in the peptide, as in Trp7, Leu8-GnRH. Six additional less hydrophobic forms of GnRH were detected. Tilapia brain extract contained two major GnRH molecular forms which had identical retention times to chicken GnRH I (Gln8-GnRH) and Trp7, Leu8-GnRH in an HPLC system which separates the natural vertebrate GnRHs. The immunological properties of these two immunoreactive peaks, determined by relative interaction with four region-specific GnRH antisera raised against vertebrate GnRHs, were identical to those of Gln8-GnRH and Trp7, Leu8-GnRH. Additional GnRH molecular forms were also detected. In summary, these findings indicate that a major GnRH molecule in hake pituitary gland is Trp7, Leu8-GnRH, while tilapia brain contains both Trp7, Leu8-GnRH and Gln8-GnRH. Additional GnRH molecular forms were detected in both species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Making connections in the fly visual system   总被引:7,自引:0,他引:7  
Clandinin TR  Zipursky SL 《Neuron》2002,35(5):827-841
Understanding the molecular mechanisms that regulate formation of precise patterns of neuronal connections within the central nervous system remains a challenging problem in neurobiology. Genetic studies in worms and flies and molecular studies in vertebrate systems have led to an increasingly sophisticated understanding of how growth cones navigate toward their targets and form topographic maps. Considerably less is known about how growth cones recognize their cellular targets and form synapses with them. Here, we review connection formation in the fly visual system, the methodological approaches used to study it, and recent progress in uncovering the molecular basis of connection specificity.  相似文献   

13.
Intermediate filaments, actin-containing microfilaments and microtubules are the three main cytoskeletal systems of vertebrate and many invertebrate cells. Although these systems are composed of distinctly different proteins, they are in constant and intimate communication with one another. Understanding the molecular basis of this cytoskeletal crosstalk is essential for determining the mechanisms that underlie many cell-biological phenomena. Recent studies have revealed that intermediate filaments and their associated proteins are important components in mediating this crosstalk.  相似文献   

14.
The nervous systems in most bilaterians are centralized, composed of central nervous systems (CNS) and peripheral nervous systems (PNS). Common molecular and cellular patterns of medial nerve cords have been observed in various distantly related bilaterians, suggesting deep homology of CNS. The development patterns of PNS, however, are more diverse than CNS across different phylogenetic lineages and the evolution of PNS so far has been thought to be polygenic. The molecular and cellular programs during the development of PNS among different bilaterian branches are drastically different. For example, vertebrate PNS is essentially derived from neural crest cells and placodes, which are largely vertebrate innovations and do not exist in invertebrates. On the other hand, the lack of common precursor cell types does not necessarily lead to the conclusion of different evolutionary origins. Homology needs to be examined with a deeper and broader scope. In this review, we examined the molecular, cellular and developmental characteristics of PNS in a broad range of bilaterians to summarize our current understanding of variation and potentially conserved themes. These comparisons demonstrate that there exist both migratory and non-migratory neuroblasts in the lateral border of CNS precursors in most model bilaterian animals. These lateral border neuroblasts are specified by conserved gene regulatory network and give rise to sensory neurons, suggesting that lateral border neuroblasts represent the progenitor of PNS and share deep homology among different branches of Bilateria. Future studies are needed to elucidate the evo-devo mechanisms of the lateral neural borders as PNS progenitors.  相似文献   

15.
FGF signaling in the invertebrate model systems Drosophila melanogaster and Caenorhabditis elegans was initially most obviously involved in cell motility events. More recently, however, FGFs and FGF signaling in these systems have been shown to affect many additional cellular processes. This recent work has shown that the pleiotropies of these FGF receptors resemble those of their vertebrate counterparts, and, in many cases, serve as excellent models for understanding the fundamental molecular mechanisms controlling these events.  相似文献   

16.
Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles. Requirements for multicellularity are (a) the construction of three‐dimensional structures involving a crucial balance between adhesiveness and motility; and (b) the establishment of integration at molecular, cellular, tissue, and organismal levels of organization. Mechanisms for (i) cell–cell and cell–substrate adhesion, (if) cell movement, (Hi) cell‐cell communication, (iv) cellular responses, (v) regulation of these processes, and (vi) their integration with patterning, growth, and other developmental processes are all crucial to metazoan development, and must have been present for the emergence and radiation of Metazoa. The principal unifying themes of this review are the dynamics and regulation of cell contact phenomena. Our knowledge of the dynamic molecular mechanisms underlying cell contact phenomena remains fragmentary. Here we examine the molecular bases of cell contact phenomena using extant model developmental systems (representing a wide range of phyla) including the simplest i.e. sponges, and the eukaryotic protist Dictyostelium discoideum, the more complex Drosophila melanogaster, and vertebrate systems. We discuss cell contact phenomena in a broad developmental context. The molecular language of cell contact phenomena is complex; it involves a plethora of structurally and functionally diverse molecules, and diverse modes of intermolecular interactions mediated by protein and/or carbohydrate moieties. Reasons for this are presumably the necessity for a high degree of specificity of inter‐molecular interactions, the requirement for a multitude of different signals, and the apparent requirement for an increasingly large repertoire of cell contact molecules in more complex developmental systems, such as the developing vertebrate nervous system. However, comparison of molecular models for dynamic adhesion in sponges and in vertebrates indicates that, in spite of significant differences in the details of the way specific cell–cell adhesion is mediated, similar principles are involved in the mechanisms employed by members of disparate phyla. Universal requirements are likely to include (a) rapidly reversible intermolecular interactions; (b) low‐affinity intermolecular interactions with fast on–off rates; (c) the compounding of multiple intermolecular interactions; (d) associated regulatory signalling systems. The apparent widespread employment of molecular mechanisms involving cadherin‐like cell adhesion molecules suggests the fundamental importance of cadherin function during development, particularly in epithelial morphogenesis, cell sorting, and segregation of cells.  相似文献   

17.
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.  相似文献   

18.
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号