首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Hematopoietic stem cells replenish all the cells of the blood throughout the lifetime of an animal. Although thousands of stem cells reside in the bone marrow, only a few contribute to blood production at any given time. Nothing is known about the differences between individual stem cells that dictate their particular state of activation readiness. To examine such differences between individual stem cells, we determined the global gene expression profile of 12 single stem cells using microarrays. We showed that at least half of the genetic expression variability between 12 single cells profiled was due to biological variation in 44% of the genes analyzed. We also identified specific genes with high biological variance that are candidates for influencing the state of readiness of individual hematopoietic stem cells, and confirmed the variability of a subset of these genes using single-cell real-time PCR. Because apparent variation of some genes is likely due to technical factors, we estimated the degree of biological versus technical variation for each gene using identical RNA samples containing an RNA amount equivalent to that of single cells. This enabled us to identify a large cohort of genes with low technical variability whose expression can be reliably measured on the arrays at the single-cell level. These data have established that gene expression of individual stem cells varies widely, despite extremely high phenotypic homogeneity. Some of this variation is in key regulators of stem cell activity, which could account for the differential responses of particular stem cells to exogenous stimuli. The capacity to accurately interrogate individual cells for global gene expression will facilitate a systems approach to biological processes at a single-cell level.  相似文献   

2.
3.
Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the first hour after the change in the cell''s state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato''s Cave algorithm; PLACA) to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are feasible for any signaling network to predict the functional topology of the network and to identify novel relationships.  相似文献   

4.
Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in microarray analysis is the classification of unknown expression profiles. Specifically, the often large number of non-informative genes on the microarray adversely affects the performance and efficiency of classification algorithms. Furthermore, the skewed ratio of sample to variable poses a risk of overfitting. Thus, in this context, feature selection methods become crucial to select relevant genes and, hence, improve classification accuracy. In this study, we investigated feature selection methods based on gene expression profiles and protein interactions. We found that in our setup, the addition of protein interaction information did not contribute to any significant improvement of the classification results. Furthermore, we developed a novel feature selection method that relies exclusively on observed gene expression changes in microarray experiments, which we call “relative Signal-to-Noise ratio” (rSNR). More precisely, the rSNR ranks genes based on their specificity to an experimental condition, by comparing intrinsic variation, i.e. variation in gene expression within an experimental condition, with extrinsic variation, i.e. variation in gene expression across experimental conditions. Genes with low variation within an experimental condition of interest and high variation across experimental conditions are ranked higher, and help in improving classification accuracy. We compared different feature selection methods on two time-series microarray datasets and one static microarray dataset. We found that the rSNR performed generally better than the other methods.  相似文献   

5.
6.
MOTIVATION: Discriminant analysis is an effective tool for the classification of experimental units into groups. Here, we consider the typical problem of classifying subjects according to phenotypes via gene expression data and propose a method that incorporates variable selection into the inferential procedure, for the identification of the important biomarkers. To achieve this goal, we build upon a conjugate normal discriminant model, both linear and quadratic, and include a stochastic search variable selection procedure via an MCMC algorithm. Furthermore, we incorporate into the model prior information on the relationships among the genes as described by a gene-gene network. We use a Markov random field (MRF) prior to map the network connections among genes. Our prior model assumes that neighboring genes in the network are more likely to have a joint effect on the relevant biological processes. RESULTS: We use simulated data to assess performances of our method. In particular, we compare the MRF prior to a situation where independent Bernoulli priors are chosen for the individual predictors. We also illustrate the method on benchmark datasets for gene expression. Our simulation studies show that employing the MRF prior improves on selection accuracy. In real data applications, in addition to identifying markers and improving prediction accuracy, we show how the integration of existing biological knowledge into the prior model results in an increased ability to identify genes with strong discriminatory power and also aids the interpretation of the results.  相似文献   

7.
8.
We have investigated the extent of sequence variation in human ribosomal RNA (rRNA) genes and the expression of specific rRNA gene variants in different tissues of an individual. Focusing on the fifth variable region (V5; nt 2065-2244) of the 28S rRNA gene, we find that sequence differences between rRNA genes of a single individual are characterized by differences in number of repeats of simple sequences at four specific sites. These data support and extend previous findings which show similar V5 sequence variation in rRNA genes from a group of individuals. We performed experiments to determine if there is differential gene expression within the rRNA multigene family. From the analysis of data of six variant V5 probes protected from RNase digestion by rRNAs isolated from different tissues of the individual, we conclude that each variant rRNA is present in a similar proportion in these tissues, whereas the actual contributions of variants differ, their relative proportion is maintained from tissue to tissue in an individual. We favor the explanation of a gene dosage effect over that of a regulated gene effect to account for this pattern of rRNA gene expression. In addition, computer generated secondary structure models of each V5 clone structure predict the same three helix structure with the regions of sequence variation contained in one stem-loop structure.  相似文献   

9.
Clustering techniques have been widely used in the analysis of microarray data to group genes with similar expression profiles. The similarity of expression profiles and hence the results of clustering greatly depend on how the data has been transformed. We present a method that uses the relative expression changes between pairs of conditions and an angular transformation to define the similarity of gene expression patterns. The pairwise comparisons of experimental conditions can be chosen to reflect the purpose of clustering allowing control the definition of similarity between genes. A variational Bayes mixture modeling approach is then used to find clusters within the transformed data. The purpose of microarray data analysis is often to locate groups genes showing particular patterns of expression change and within these groups to locate specific target genes that may warrant further experimental investigation. We show that the angular transformation maps data to a representation from which information, in terms of relative regulation changes, can be automatically mined. This information can be then be used to understand the "features" of expression change important to different clusters allowing potentially interesting clusters to be easily located. Finally, we show how the genes within a cluster can be visualized in terms of their expression pattern and intensity change, allowing potential target genes to be highlighted within the clusters of interest.  相似文献   

10.
Multivariate measurement of gene expression relationships   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
13.
14.
Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies and early cancer detection. However, the current temporal gene expressions usually have few measuring time series levels; extracting information and identifying efficient treatment effects without temporal information are still a problem. A?dense temporal gene expression data set in bacteria shows that the gene expression has various patterns under different biological conditions. Instead of analyzing gene expression levels, in this paper we consider the relative change-rates of gene in the observation period. We propose a non-linear regression model to characterize the relative change-rates of genes, in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. Then, based on the parameter estimates, a chi-square test is proposed to test the equality of gene expression change-rates. Furthermore, the Mahalanobis distance is used for the classification of genes. The proposed methods are applied to the data set of 18?genes in P. aeruginosa expressed in 24?biological conditions. The simulation studies show that our methods perform well for analysis of temporal gene expressions.  相似文献   

15.
Mapping physiological states from microarray expression measurements   总被引:3,自引:0,他引:3  
MOTIVATION: The increasing use of DNA microarrays to probe cell physiology requires methods for visualizing different expression phenotypes and explicitly connecting individual genes to discriminating expression features. Such methods should be robust and maintain biological interpretability. RESULTS: We propose a method for the mapping of the physiological state of cells and tissues from multidimensional expression data such as those obtained with DNA microarrays. The method uses Fisher discriminant analysis to create a linear projection of gene expression measurements that maximizes the separation of different sample classes. Relative to other typical classification methods, this method provides insights into the discriminating characteristics of expression measurements in terms of the contribution of individual genes to the definition of distinct physiological states. This projection method also facilitates visualization of classification results in a reduced dimensional space. Examples from four different cases demonstrate the ability of the method to produce well-separated groups in the projection space and to identify important genes for defining physiological states. The method can be augmented to also include data from the proteomic and metabolic phenotypes and can be useful in disease diagnosis, drug screening and bioprocessing applications.  相似文献   

16.
Dosage sensitivity is an important evolutionary force which impacts on gene dispensability and duplicability. The newly available data on human copy-number variation (CNV) allow an analysis of the most recent and ongoing evolution. Provided that heterozygous gene deletions and duplications actually change gene dosage, we expect to observe negative selection against CNVs encompassing dosage sensitive genes. In this study, we make use of several sources of population genetic data to identify selection on structural variations of dosage sensitive genes. We show that CNVs can directly affect expression levels of contained genes. We find that genes encoding members of protein complexes exhibit limited expression variation and overlap significantly with a manually derived set of dosage sensitive genes. We show that complexes and other dosage sensitive genes are underrepresented in CNV regions, with a particular bias against frequent variations and duplications. These results suggest that dosage sensitivity is a significant force of negative selection on regions of copy-number variation.  相似文献   

17.

Background  

Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods.  相似文献   

18.
Gene expression profiling offers a great opportunity for studying multi-factor diseases and for understanding the key role of genes in mechanisms which drive a normal cell to a cancer state. Single gene analysis is insufficient to describe the complex perturbations responsible for cancer onset, progression and invasion. A deeper understanding of the mechanisms of tumorigenesis can be reached focusing on deregulation of gene sets or pathways rather than on individual genes. We apply two known and statistically well founded methods for finding pathways and biological processes deregulated in pathological conditions by analyzing gene expression profiles. In particular, we measure the amount of deregulation and assess the statistical significance of predefined pathways belonging to a curated collection (Molecular Signature Database) in a colon cancer data set. We find that pathways strongly involved in different tumors are strictly connected with colon cancer. Moreover, our experimental results show that the study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. Our study shows the importance of using gene sets rather than single genes for understanding the main biological processes and pathways involved in colorectal cancer. Our analysis evidences that many of the genes involved in these pathways are strongly associated to colorectal tumorigenesis. In this new perspective, the focus shifts from finding differentially expressed genes to identifying biological processes, cellular functions and pathways perturbed in the phenotypic conditions by analyzing genes co-expressed in a given pathway as a whole, taking into account the possible interactions among them and, more importantly, the correlation of their expression with the phenotypical conditions.  相似文献   

19.
The expression patterns of 62 genes interacting with p53 have been investigated in 24 normal and cancerous tissues using NIH's dbEST library. The expression levels of individual genes, such as the TTP53 gene itself, but also other genes, vary up to 33-fold among the 24 different tissues and no consistent pattern can be recognized. However, when expression levels for all 63 genes are summed, these "cumulated levels" are surprisingly constant over the 24 investigated normal tissues. In cancers, the variation is further reduced. Essentially, the cumulated expression levels in cancer are independent of those in normal tissue. We furthermore constructed a linear statistical classifier, i.e., a weighted sum of gene expression levels, which robustly distinguishes normal from cancer tissue independent of the particular kind of tissue. Thus, despite very large differences for individual genes and considerable changes during carcinogenesis, the cumulated expressions have narrowly defined levels.  相似文献   

20.
There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号