首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lactic acid bacterium, Leuconostoc mesenteroides, when grown on an arbutin-containing medium, was found to produce an intracellular β-glucosidase. The enzyme was purified by chromatofocusing, ion-exchange chromatography and gel filtration. The molecular mass of the purified intracellular β-glucosidase, as estimated by gel filtration, was 360 kDa. The tetrameric structure of the β-glucosidase was determined following treatment of the purified enzyme with dodecyl sulphate (SDS). The intracellular β-glucosidase exhibited optimum catalytic activity at 50°C and pH 6 with citrate–phosphate buffer, and 5·5 with phosphate buffer. The enzyme was active against glycosides with (1→4)-β, (1→4)-α and (1→6)-α linkage configuration. From Lineweaver–Burk plots, K m values of 0·07 mmol l−1 and 3·7 mmol l−1 were found for p -nitrophenyl-β- D -glucopyranoside and linamarin, respectively. The β-glucosidase was competitively inhibited by glucose and by D -gluconic acid–lactone and a glucosyl transferase activity was observed in the presence of ethanol. The β-glucosidase of Leuconostoc mesenteroides, with cyanogenic activity, could be of potential interest in cassava detoxification, by hydrolysing the cyanogenic glucosides present in cassava pulp.  相似文献   

2.
Few bacteria are capable of degrading crystalline cellulose but there is considerable interest in the properties of enzyme systems with this capability. In the bovine and ovine rumen the principal cellulolytic bacterium is Fibrobacter (formerly Bacteroides ) succinogenes. The cellulase system of this organism is composed of multiple enzyme components, including a constitutive and cell-associated β -glucosidase active against cellobiose. The properties of the β -glucosidase activity have been investigated with the chromogenic substrate β -nitrophenyl β -D-glucoside (pNPG). Hydrolytic activity against pNPG was located primarily in the cytoplasm and the cytoplasmic membrane but showed a gradual migration to the periplasm during growth on either glucose or cellobiose. Activity against cellobiose was found in the periplasm in significant amounts in all growth phases. Of the β -glucosides tested, only cellobiose and pNPG were hydrolysed by crude cell extracts. In the presence of cellobiose, however, the rate of hydrolysis of pNPG was stimulated up to 10-fold, and extracts hydrolysed methylumbelliferyl β -D-glucoside, 5-bromo-4-chloro-3-indolyl β -D-glucoside, arbutin and aesculin. Activities against pNPG in the presence and absence of cellobiose displayed similar instability in the presence of oxygen; both were stabilized by dithiothreitol and the temperature and pH optima were identical. A significant proportion of the membrane-associated β -glucosidase was released by treatment with 0.3 mol/1 KCl, and fractionation by chromatography on CM-cellulose showed the presence of two activities against pNPG, only one of which was stimulated by cellobiose.  相似文献   

3.
Abstract— Properties of both a transglucosylation reaction and the hydrolytic activity of a partially purified calf brain β -glucosidase were investigated. Sodium taurocholate and a 'Gaucher factor' stimulated both activities. A purified 'stimulatory' factor from human liver did not appear to significantly affect the hydrolytic activity towards either 4-methylumbelliferone- β - d -glucoside or [14C]glucosyl ceramide. Several compounds were found to be competitive inhibitors of the hydrolytic activity, conduritol B epoxide and norjirimycin being the most effective. Glucosyl ceramide hydrolysis was more sensitive to inhibition by p -chloromercuribenzenesulfonate than 4-methylumbelliferone- β -glucoside cleavage. The partially purified enzyme preparation catalyzed the formation of [14C]glucosyl ceramide with N -[14C]oleoyl sphingosine as the acceptor and several β -glucosides as the donor.  相似文献   

4.
A constitutive, plasma-membrane bound β-glucosidase in Trichoderma reesei   总被引:2,自引:0,他引:2  
Abstract Plasma membranes of Trichoderma reesei QM 9414, isolated from protoplasts by means of the concanavalin A procedure, contained β-glucosidase activity, which appeared constitutively upon growth on glucose. The enzyme had a pH optimum around 6, and was active on p -nitrophenyl-β- d -glucoside, cellobiose and sophorose ( K m 0.7, 3.9 and 3.1 mM, respectively). Glucose was only weakly inhibitory ( K i 7 mM). Treatment of the plasma membranes with Triton X-100, Tween 80 or digitonin solubilized more than 60% of the membrane-bound β-glucosidase activity. The enzyme so solubilized exhibited an M r of 70 000 ± 5000 and an isoelectric point at pH 8.2 ± 0.3.  相似文献   

5.
Transport and metabolism of 8-14 C-zeatin, applied to an attached de-tipped one-year-old mature leaf of a Yucca plant bearing a bleeding inflorescent stalk, has been studied. Radioactive zeatin ribotide was found in the exudate of the bleeding inflorescence, which was collected over a period of 5 days. Radioactive zeatin ribotide was mainly extracted from the fed leaf. Minor conversion products in this leaf were zeatin ribotide, zeatin- o -β-glucoside and zeatinriboside o -β-glucoside.
In not zeatin fed plants, zeatin- o -β-glucoside was tentatively identified as the main endogenous cytokinin in one-year-old mature leaves. In the bleeding sap of not treated plants no free bases of zeatin or zeatin ribosides were found. After alkaline phosphatase treatment zeatin-riboside was detected by combined gas chromatography-mass spectrometry, indicating the presence of zeatin ribotide in the bleeding sap. High β-glucosidase activity was found in the stern.
Results suggest that stared cytokinin glucosides from Yucca leaves are, converted by β-glucosidase in leaves and stem, transported through the inflorescent stalk as zeatin nucleotides.  相似文献   

6.
A modified mE medium (mEI) containing the chromogenic substrate indoxyl-β- D -glucoside to detect β- D -glucosidase activity was evaluated with respect to specificity and recovery of enterococci from environmental waters. Extending incubation from 24 to 48 h improved enterococci recovery but 77% of the colonies classified as non-target were confirmed as enterococci. Randomly chosen enterococcal isolates from sewage, exposed in microcosms containing 0·22 μm membrane filtered fresh or estuarine water, exhibited differences in persistence as a function of exposure treatment. Decreasing the concentration of or eliminating indoxyl-β- D -glucoside from mE did not significantly affect recovery of purified isolates.  相似文献   

7.
A Curvularia sp. isolated from soil was found to produce extracellular β-glucosidase activity when grown in yeast extract, peptone, carboxymethylcellulose (YPC) medium. An initial medium pH of 6·5 and cultivation temperature of 30°C were found to be most suitable for high enzyme productivity. The pH and temperature optima for the enzyme were 4·0 and 70°C, respectively. Under these conditions, the enzyme exhibited a Km (0-nitrophenyl-β- d -glucoside) value of 0.20 mmol/l. Several divalent metal ions inhibited enzyme activity at high concentration. EDTA. also inhibited β-glucosidase activity.  相似文献   

8.
In this study, Saccharomyces cerevisiae was engineered for simultaneous saccharification and fermentation of cellulose by the overexpression of the endoglucanase D (EngD) from Clostridium cellulovorans and the β-glucosidase (Bgl1) from Saccharomycopsis fibuligera . To promote secretion of the two enzymes, the genes were fused to the secretion signal of the S. cerevisiae α mating factor gene. The recombinant developed yeast could produce ethanol through simultaneous production of sufficient extracellular endoglucanase and β-glucosidase. When direct ethanol fermentation from 20 g L−1β-glucan as a substrate was performed with our recombinant strains, the ethanol concentration reached 9.15 g L−1 after 50 h of fermentation. The conversion ratio of ethanol from β-glucan was 80.3% of the theoretical ethanol concentration produced from 20 g L−1β-glucan. In conclusion, we have demonstrated the construction of a yeast strain capable of conversion of a cellulosic substrate to ethanol, representing significant progress towards the realization of processing of cellulosic biomass in a consolidated bioprocessing configuration.  相似文献   

9.
Abstract Genomic DNA fragments encoding β-glucosidase activity from the wild-type strain WD4 of Erwinia herbicola were cloned into Escherichia coli . Two clones containing a common fragment encoded a polypeptide of 58000 Da. Cloned β-glucosidase, expressed in E. coli , showed activity against natural β-glucoside sugars except for cellobiose. An open reading frame of 1442 bp termed bglA was identified by nucleotide sequencing and it coded for a protein of 480 amino acids ( M r 53896) which showed significant homology with β-glucosidases from glycosyl hydrolase family 1.  相似文献   

10.
Abstract A Monilia sp. produced an inducible intracellular β- d -glucosidase (IG-2) which is the nascent form of the extracellular enzyme (EG-1) prior to its secretion into the extracellular medium. The other intracellular β- d -glucosidase (IG-1) produced was a constitutive enzyme. Highest yields of the inducible β- d -glucosidase resulted when Monilia sp. was grown on insoluble cellulose. Cellobiose and d -glucose appeared to repress β- d -glucosidase formation at high substrate levels and synthesis occurred only once the levels of these sugars in the medium were nearly depleted.  相似文献   

11.
Characterization of β-glucosidase activity in yeasts of oenological origin   总被引:4,自引:4,他引:0  
I. ROSI, M. VINELLA AND P. DOMIZIO. 1994. Three hundred and seventeen strains representing 20 species of yeasts were screened for the presence of β-glucosidase activity. All of the strains of the species Debaryomyces castellii, Deb. hansenii, Deb. polymorphus, Kloeckera apiculata and Hansenula anomala showed β-glucosidase activity, but only one of 153 strains of Saccharomyces cerevisiae. The other species behaved differently, depending upon the strain. The strains that hydrolysed arbutin were checked to localize the β-glucosidase activity. A strain of Deb. hansenii exhibited the highest exocellular activity and some wall-bound and intracellular activity. The β-glucosidase synthesis from this yeast was enhanced by aerobic conditions of growth, was repressed by high glucose concentration (9%) and occurred during exponential growth. The optimum conditions for enzymatic preparations of Deb. hansenii were between pH 4.0 and 5.0 and 40C. A high concentration of ethanol and glucose did not reduce the ezymatic activity. The enzymatic preparations of Deb. hansenii released monoterpenols and other alcohols from a grape glycoside extract.  相似文献   

12.
A yeast strain isolated in the laboratory was studied and classified as a Zygosaccharomyces bailii. Both intracellular and extracellular β-glucosidases of this yeast were purified by ion-exchange chromatography, gel filtration and hydroxylapatite (only for the intracellular enzyme). The tetrameric structure of the two β-glucosidases was determined following treatment of the purified enzyme with dodecyl sulphate. The intracellular β-glucosidase exhibited optimum activity at 65°C and pH 5.5. The extracellular enzyme exhibited optimum catalytic activity at 55°C and pH 5. The molecular mass of purified intracellular and extracellular β-glucosidases, estimated by gel filtration, was 440 and 360 kDa, respectively. Both enzymes are active against glycosides with (1 → 4)-β, (1 → 6)-β and (1 → 4)-α linkage configuration. The intracellular enzyme possesses (1 → 6)-α-arabinofuranosidase activity and extracellular enzyme (1 → 6)-α-rhamno-pyranosidase activity. The two β-glucosidases are competitively inhibited by glucose and by D-gluconic-acid-lactone and a slight glucosyl transferase activity is observed in the presence of ethanol. Since the glycosides present in wine and fruit juices represent a potential source of aromatic flavour, the possible use of the yeast β-glucosidases for the liberation of the bound aroma is discussed.  相似文献   

13.
Abstract A gene library of the hyperthermophilic bacterium Thermotoga maritima strain MSB8 was constructed in Escherichia coli . Two non-related T. maritima chromosomal DNA fragments were physically characterized. They conferred the synthesis of thermostable X-Gal (5-bromo-4-chloro-3-indolyl-β- d -galactopyranoside)-hydrolysing activity upon the host organism. The biochemical properties of the recombinant enzymes indicated that genes for a β-galactosidase (BgaA) and a broad-specificity β-glucosidase (Bg1A) had been isolated. The genes were desiignted bgaA and bglA , respectively. According to analytical size exclusion chromatography data, BgaA and BglA had native molecular masses of approximately 240 kDa and 95 kDa, respectively. Both enzymes apparently have dimeric subunit structure. An additional β-glucosidase (designated BglB) activity, clearly distinct from BglA in terms of substrate specificity, could be detected in a crude extract of T. maritima .  相似文献   

14.
The polysaccharidic effect of a purified 1,3- β -glucanase, a purified β -glucosidase, and of partially purified endo-1,3- β -glucanase from autolysed Penicillium oxalicum cultures on cell wall isolate fractions from the same fungus were studied.
Fractionation of 5-day-old cell wall gave rise to a series of fractions that were identified using infrared spectrophotometry. The fractions used were: F1, an α -glucan; F3, a β -glucan; F4, a chitin-glucan; and F4b, a β -glucan. The fractions were incubated with each of the enzymes and with a mixture of equal parts of the three enzymes and the products of the enzymatic hydrolysis were analyzed after 96 h incubation.
The enzymes were found to degrade fraction F4b ( β -glucan); the greatest degree of hydrolysis was reached when the three enzymes were used together, suggesting the need for synergic action by these enzymes in the cell wall degradation process.  相似文献   

15.
Abstract The cellulolytic actinomycete Streptomyces sp. QM-B814 posasses an intracellular β-glucosidase system which is induced by cellobiose and carboxymethylcellulose. Maximal β-glucosidase activity was attained 8–10 h after inducer addition to exponential phase growing cultures. The induction is depressed in the presence of glucose. The system is composed of two electrophoretically different β-glucosidase forms showing relative molecular masses of about 60 and 35 kDa, and p I values in the range 4.2–4.5. Both β-glucosidases are synthesized de novo. The enzymes share substrate preference and are both inhibited by δ-gluconolactone and p -chloromercuribenzoate. The induction pattern and glucose inhibition are similar for both enzymes.  相似文献   

16.
A DNA fragment containing a Klebsiella oxytoca gene for aesculinase activity was cloned on the multicopy plasmid pBR322. This β-glucosidase activity was confined to aesculin hydrolysis only. It was expressed equally well in Escherichia coli, Salmonella typhimurium and Aeromonas hydrophila. Two polypeptides were found to be encoded within the 2·6 kb of the cloned DNA encoding aesculinase activity.  相似文献   

17.
Abstract Mutants of Candida wickerhamii and Dekkera intermedia , derepressed for β-glucosidase biosynthesis, were isolated. These mutants were also shown to hyperproduce this enzyme. In anaerobic culture, the C. wickerhamii mutant still hyperproduced β-glucosidase and was derepressed. Glucose-cellobiose anaerobic fermentation by this strain was thus improved. On the other hand, the D. intermedia mutant did not show any difference from the wild-type strain in anaerobic culture.  相似文献   

18.
Aims:  To evaluate the soybean polyphenol glucosides bioconversion to aglycone forms by different β-glucosidases-producing filamentous fungi to enhance their antioxidant activity.
Methods and Results:  Soybean defatted flour was submitted to solid-state fermentation with Aspergillus niger , Aspergillus niveus and Aspergillus awamori . The fungi studied produced approximately the same β-glucosidase activity units amount when p- nitrophenyl-β- d -glucopyranoside was used as substrate for the assay. However, electrophoretic analysis, using 4-methylumbellipheryl-β- d -glucopyranoside as substrate, showed that β-glucosidase produced by A.   niveus was more active. Fermented methanolic extracts showed an increase in polyphenol and genistein contents and antioxidant activities. The highest genistein content was found in soybean fermented by A. niveus . Methanolic extracts of the soybean fermented by the different fungi showed a similar capacity of scavenging H2O2 generated in vivo by the tumour promoter 12- O- tetradecanoyl phorbol-13-acetate.
Conclusions:  A.   niveus synthesized a β-glucosidase with higher specificity to hydrolyse genistin β-glycosidic bond than those produced by A .  awamori and A. niger .
Significance and Impact of the Study:  The utilization of these β-glucosidases-producing fungi in soybean fermentation processes resulted in the obtaining of methanolic extracts with different antioxidant potentials that could be used either therapeutically or as an antioxidant in nonphysiological oxidative stress conditions, as the one induced in skin by UV radiation.  相似文献   

19.
We have isolated the ypfP gene (accession number P54166) from genomic DNA of Bacillus subtilis Marburg strain 60015 ( Freese and Fortnagel, 1967 ) using PCR. After cloning and expression in E. coli , SDS–PAGE showed strong expression of a protein that had the predicted size of 43.6 kDa. Chromatographic analysis of the lipids extracted from the transformed E. coli revealed several new glycolipids. These glycolipids were isolated and their structures determined by nuclear magnetic resonance (NMR) and mass spectrometry. They were identified as 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol, 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol and 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol. The enzymatic activity expected to catalyse the synthesis of these compounds was confirmed by in vitro assays with radioactive substrates. In these assays, one additional glycolipid was formed and tentatively identified as 3-[ O -β- D -glucopyranosyl]-1,2-diacylglycerol, which was not detected in the lipid extract of transformed cells. Experiments with some of the above-described glycolipids as 14C-labelled sugar acceptors and unlabelled UDP-glucose as glucose donor suggest that the ypfP gene codes for a new processive UDP-glucose: 1,2-diacylglycerol-3-β- D -glucosyl transferase. This glucosyltransferase can use diacylglycerol, monoglucosyl-diacylglycerol, diglucosyldiacylglycerol or triglucosyldiacylglycerol as sugar acceptor, which, apart from the first member, are formed by repetitive addition of a glucopyranosyl residue in β (1→6) linkage to the product of the preceding reaction.  相似文献   

20.
Abstract Bacillus circulans WL-12 secretes 1,4-β- d -xylanase and 1,3-β- d - and 1,6-β- d -glucanase activities. All of them are catabolites regulated by glucose and, while xylanase needs xylan as the inducer, the two latter enzyme activities are formed once glucose is depleted. Cyclic nucleotides such as adenosine 3',5'-monophosphate (cAMP) and guanosine 3',5' monophosphate (cGMP) exhibit a negative effect on enzyme synthesis if added to the culture media. Based on the fact that only cAMP is found in cells growing in glucose-rich media we propose a model for B. circulans WL-12 in which cAMP acts as a negative effector for regulating the synthesis of these enzymes. The model is not, however, extrapolated to other Bacillus species and all B. circulans strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号