首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenous cyclic AMP and dibutyryl cyclic AMP decreased the relative ciliary activity values of tracheal organ cultures. In contrast, theophylline and cholera toxin were not ciliostatic. The use of a radioimmunoassay for cyclic AMP indicated that all of the tested substances increased intracellular cyclic AMP levels to some extent (from 3-fold for cholera toxin to almost 40-fold for dibutyryl cyclic AMP). Physical inactivation of explants by either freeze-thaw or heat destroyed all ciliary activity and greatly decreased intracellular cyclic AMP levels. Cyclic AMP levels of explants remained relatively constant during in vitro cultivation. Three strains of Mycoplasma pneumoniae were found to contain extremely low amounts of cyclic AMP. Infection of tracheal explants produced a significant decrease in relative ciliary activity, but only a slight decline in organ-culture cyclic AMP levels.  相似文献   

2.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

3.
The effect of cholera toxin on myogenesis in rat skeletal muscle cultures   总被引:1,自引:0,他引:1  
Cholera toxin, when added to rat primary embryonic muscle cultures, stimulates intracellular cyclic AMP and cell fusion. The effect on cell fusion can be mimicked by daily addition of dibutyryl cyclic AMP, but not by choleragenoid, which like cholera toxin binds to the ganglioside GM1, but does not stimulate adenyl cyclase. The effects on fusion of three other agents known to affect intracellular cyclic AMP levels, indomethacin, isobutylmethyl xanthine, and isoproterenol were also studied. It is concluded that intracellular cyclic AMP levels are important in the control of rat skeletal muscle cell fusion.  相似文献   

4.
Glucagon (10 nM) caused a transient elevation of intracellular cyclic AMP concentrations, which reached a peak in around 5 min, and slowly returned to basal values in around 30 min. When 1 mM-3-isobutyl-1-methylxanthine (IBMX) was present, this process yielded a Ka of 1 nM for glucagon. The addition of insulin (10 nM) after 5 min exposure to glucagon (10 nM) caused intracellular cyclic AMP concentrations to fall dramatically, attaining basal values within 10 min. The regulation of this process was dose-dependent, exhibiting a Ka of 0.4 nM for insulin. If insulin and glucagon were added together to hepatocytes, then insulin decreased the magnitude of the cyclic AMP response to glucagon. IBMX (1 mM) prevented insulin antagonizing the action of glucagon in both of these instances. A gentle homogenization procedure followed by a rapid subcellular fractionation of hepatocytes on a Percoll gradient was developed. This was used to resolve subcellular membrane fractions and to identify cyclic AMP phosphodiesterase activity in both membrane and cytosol fractions. Glucagon and insulin only affected the activity of two distinct membrane-bound species, a plasma-membrane enzyme and a 'dense vesicle' enzyme. Glucagon (10 nM), insulin (10 nM), IBMX (1 mM), dibutyryl cyclic AMP (10 microM) and cholera toxin (1 microgram/ml) all elicited the activation of the 'dense vesicle' enzyme. The plasma-membrane enzyme was not activated by glucagon, IBMX or dibutyryl cyclic AMP, although insulin and cholera toxin both led to its activation. The degree of activation of the plasma-membrane enzyme produced by insulin was increased in the presence of IBMX or dibutyryl cyclic AMP. Glucagon pretreatment (5 min) of hepatocytes blocked the ability of insulin to activate the plasma-membrane enzyme. The activity state of these phosphodiesterases is discussed in relation to the observed changes in intracellular cyclic AMP concentrations. It is suggested that insulin exerts its action on the plasma-membrane phosphodiesterase through a mechanism involving a guanine nucleotide-regulatory protein.  相似文献   

5.
Cyclic AMP increased 8- to 10-fold after a 3-h treatment with 6 nM cholera toxin in rat C6-2B astrocytoma cells. In the presence of cycloheximide, cholera toxin increased intracellular cyclic AMP about 50-fold. Qualitatively similar potentiation of cholera toxin action by cycloheximide was observed in isolated swine aortic vascular smooth muscle cells. Cycloheximide, by itself, had no effect upon cyclic AMP levels and did not alter the apparent Ka for cyclic AMP generation by cholera toxin in the cells. Also, cycloheximide did not appear to augment cholera toxin action via inhibition of cyclic nucleotide phosphodiesterase. Puromycin and actinomycin D also augmented cholera toxin action in C6-2B cells. Potentiation of cholera toxin-increased cyclic AMP formation by cycloheximide was correlated with the inhibition of [14C]leucine incorporation into protein. These results indicate that the ability of cholera toxin to stimulate cyclic AMP production in C6-2B astrocytoma and swine vascular smooth muscle cells is enhanced by inhibition of de novo protein synthesis.  相似文献   

6.
The morphological conversion of Chinese hamster ovary cells induced by treatment with dibutyryl cyclic AMP is correlated with increases in the intracellular level of cyclic AMP and the activation of cyclic AMP-dependent protein kinase. When cholera toxin is used to induce the increase in intracellular cyclic AMP, a similar correlation is obtained. Treatment of cells with prostaglandin E1, which causes a transient increase in intracellular cyclic AMP and a transient activation of protein kinase activity, does not result in the morphology change. From these studies we conclude that a stable activation of the cyclic AMP-dependent protein kinase, which results from an increase in intracellular cyclic AMP, induces the morphological conversion of Chinese hamster ovary cells through phosphorylation of one or more cellular components.  相似文献   

7.
Incubation of GH1 cells with cholera toxin for 24 h inhibits [32P]ADP-ribose incorporation into histones and non-histone nuclear proteins by more than 50%. The toxin produces a generalized decrease of incorporation into all protein acceptors and into the poly(ADP-ribosyl)ated components excised from chromatin after micrococcal nuclease digestion. The cellular levels of NAD were also decreased (40 to 80%) after treatment with cholera toxin. The inhibition of poly(ADP-ribosyl)ation is preceded by an increase of [32P]ADP-ribose incorporation, since incubation with the toxin for 3 h caused an increase instead of a decrease of incorporation. Incubation with dibutyryl cyclic AMP for 24 h also inhibited nuclear poly(ADP-ribosyl)ation, thus showing that the effect of cholera toxin might be mediated by cyclic AMP.  相似文献   

8.
The effects of nerve growth factor (NGF), dibutyryl cyclic AMP (db cAMP), and cholera toxin on neurofilament protein expression in cultures of PC12 rat pheochromocytoma cells were examined using an enzyme-linked immunoadsorbent assay (ELISA). Morphological differentiation induced by NGF was associated with up to 30-fold increases in the level of neurofilament protein recognised by monoclonal antibody RT97. A more rapid response was apparent from primed as compared to naive PC12 cells. Cholera toxin and db cAMP both induced morphological differentiation of naive PC12 cells, but failed to promote neurite regeneration from primed cells. Neither response was associated with a significant induction of neurofilament protein. Both cholera toxin and db cAMP, but not B-cholera toxin nor antibodies to the toxin receptor, were found to inhibit the neurofilament protein response induced by NGF. Primed cells were more susceptible to this inhibition, and both cholera toxin and db cAMP inhibited neurite regeneration from these cells. These data suggest that increased intracellular cyclic AMP can suppress the expression of neuronal differentiation antigens induced by NGF, and are consistent with a role for neurofilament protein in promoting or facilitating the formation of a stable neuritic network.  相似文献   

9.
Rat C6-2B astrocytoma cells responded to cholera toxin treatment with an 8-fold increase in intracellular cyclic AMP concentrations. Cyclic AMP levels began to rise 60--90 minutes after addition of the toxin and reached maximal concentrations in 3 hours. Cells exposed to cholera toxin and the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), displayed an increase in cyclic AMP of 15-fold. The peak isoproterenol response was reduced 80--90% in cells previously treated with cholera toxin. Cholera toxin-induced refractoriness was time dependent and was not altered by concurrent treatment with propranolol. Prolonged exposure of the cells to isoproterenol reduced the cyclic AMP response to cholera toxin by 80%. MIX augmented both cholera toxin-induced refractoriness and isoproterenol-induced refractoriness. Cycloheximide inhibited the full development of refractoriness to both cholera toxin and isoproterenol. These results indicate that C6-2B cell refractoriness to cholera toxin is mediated by cyclic AMP and requires new protein synthesis. Refractoriness in C6-2B cells does not appear to be agonist-specific and probably involves a common locus of action on adenylate cyclase beyond that of the membrane receptors for cholera toxin and isoproterenol.  相似文献   

10.
Human platelets are defective in processing of cholera toxin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholera toxin is unable to elevate cyclic AMP levels in intact human platelets despite being very efficacious in this respect in other mammalian cells; in the presence of 0.5 mM-isobutylmethylxanthine, we found that 3-6nM-cholera toxin over 3h at 37 degrees C elevated platelet cyclic AMP from 33 +/- 13 to 39 +/- 12pmol/mg of protein (means +/- S.D.; n = 12). We have investigated the basis for this lack of response. 125I-labelled cholera toxin bound to platelets both saturably and with high affinity (Kd congruent to 60pM; Bmax. congruent to 50fmol/mg of protein). Incubation of platelets with the putative cholera toxin receptor monosialoganglioside GM1 enhanced 125I-labelled cholera toxin binding at least 40-fold but facilitated only a minimal (less than or equal to 3-fold) elevation of platelet cyclic AMP levels. In contrast, dithiothreitol-activated cholera toxin markedly stimulated adenylate cyclase activity in platelet membranes. Platelet cytosol both enhanced stimulation of adenylate cyclase activity by activated cholera toxin (A1 subunit) and supported stimulation by the A1-A2 subunit of cholera toxin. Neither GTP nor NAD+, both necessary for response to cholera toxin, was lacking in intact platelets. However, we found that platelets were unable to cleave cholera toxin to the active A1 subunit (as assessed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis). By contrast, murine S49 lymphoma cells were able to generate the A1 subunit with a time course that closely resembled the kinetics of toxin-mediated cyclic AMP accumulation in these cells. Thus we conclude that human platelets are defective in their ability to process surface-bound cholera toxin. These results indicate that binding of cholera toxin to surface receptors is necessary, but not sufficient, for expression of the toxin effect and the generation of the A1 subunit of the toxin may be rate-limiting for expression of cholera toxin response.  相似文献   

11.
We have previously shown that amitriptyline, a tricyclic antidepressant, inhibited neurite outgrowth from chick embryonic cerebral explants, and that dibutyryl cyclic AMP, 3-isobutyl-1-methylxanthine, or theophylline can enhance neurite outgrowth from embryonic olfactory explants. In the present study, we examined the mechanism(s) underlying amitriptyline-mediated inhibition of neurite outgrowth by studying the effects of amitriptyline on adenylate cyclase activity and cyclic AMP levels. In cultured chick embryonic cerebral explants, dibutyryl cyclic AMP or theophylline, but not dibutyryl cyclic GMP, enhanced neurite outgrowth and partially reduced the inhibitory effects of amitriptyline on neurite outgrowth. Explants treated with amitriptyline for 2 days showed decreased cyclic AMP levels that significantly correlated with the degree of neurite outgrowth. Amitriptyline inhibited both basal and forskolin-stimulated adenylate cyclase activity in vitro, but only in the presence of GTP. Taken together, these data suggest that amitriptyline inhibits the activity of adenylate cyclase via a GTP-dependent mechanism, and that the subsequent decrease in cyclic AMP level may be involved in amitriptyline-mediated inhibition of neurite outgrowth.  相似文献   

12.
The effects of glucose and of various inhibitors of glycolysis or of oxidative phosphorylation on stimulated lipolysis and on intracellular cyclic AMP and ATP levels were investigated in isolated human fat cells. The glycolysis inhibitors, NaF and monoiodoacetate, inhibited epinephrine or theophylline-stimulated lipolysis and parallely reduced the intracellular cyclic AMP and ATP levels; however, neither NaF nor monoidoacetate significantly affected dibutyryl cyclic AMP-induced lipolysis. Removal of glucose from the medium also reduced the rate of epinephrine-stimulated lipolysis and the intracellular cyclic AMP and ATP levels but failed to modify the lipolytic activity of dibutyryl cyclic AMP. The oxidative phosphorylation inhibitors, antimycin A and, under fixed conditions, 2,4-dinitrophenol also strongly decreased the adipocyte cyclic AMP and ATP levels but inhibited as well the rate of epinephrine- and of dibutyryl cyclic AMP-induced lipolysis. N-Ethylmaleimide, a mixed glycolysis and oxidative phosphorylation inhibitor, not only reduced the intracellular cyclic AMP and ATP levels and epinephrine- or theophylline-induced lipolysis, but also that stimulated by dibutyryl cyclic AMP. When glycolysis was almost fully inhibited, human fat cells were insensitive to epinephrine but remained fully responsive to dibutyryl cyclic AMP. These results, showing a relationship between ATP availability, cyclic AMP synthesis and lipolysis, suggest a different ATP requirement for cyclic AMP synthesis and triacylglycerol lipase activation, a difference which could explain why ATP issued from glucose breakdown appears to be a determinant factor for cyclic AMP synthesis, but not for triacylglycerol lipase activation in human fat cells.  相似文献   

13.
The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.  相似文献   

14.
Summary A hamster trachea organ culture system was utilized to evaluate quantitatively the effects of a strain of nontypeableHaemophilus influenzae (NTHI) and culture supernatants of the same strain on ciliary activity. Tracheal explants were maintained in organ culture for 96 to 144 h and ciliary activity was observed daily with an inverted microscope. Explants continuously exposed to a strain of NTHI had a progressive decline in ciliary activity which was significantly lower than uninfected controls evaluated concomitantly by 48 h of exposure and thereafter. Histologic studies revealed a progressive degeneration of mucosal cells and exfoliation of ciliated cells. Scanning electron microscopy showed little adherence of NTHI to the mucosal surface. Sterile broth cultures of NTHI and supernatants of organ cultures infected with the same NTHI strain had no adverse effect on ciliary activity. Infected tracheal explants treated with ampicillin 24, 48, or 72 h after continuous bacterial challenge had no significant decline in ciliary activity compared to controls. The lack of adherence and the histologic changes observed when hamster trachea cultures were infected with NTHI suggested a toxin might mediate the damage observed. Broth and organ culture supernatants, however, produced no damage. Therefore, further studies are needed to determine the role, if any, of a toxin in the production of damage to hamster tracheal explants by NTHI. This work was supported by a Merit Review grant from the Veterans Administration and by Grant AI-19641 from the National Institute of Allergy and Infectious Diseases.  相似文献   

15.
Exposure of rat-1 fibroblasts to cholera toxin increased aerobic lactate production 3- to 8-fold with maximal stimulation observed between 1 and 2 h at a concentration of 1-2 micrograms/ml. Concomitant with this change was a 10- to 40-fold elevation in the intracellular concentration of cAMP. The cell permeable cAMP analogue, N6,2'-O-dibutyryl cAMP and the cyclic nucleotide phosphodiesterase inhibitor RO-20-1724 also increased lactate production and intracellular cAMP levels, although less effectively. Cholera toxin and dibutyryl cAMP induced a 2- to 3-fold elevation of intracellular fructose 2,6-bisphosphate and 2- to 3-fold increases in both 3-O-methylglucose and inorganic phosphate transport. A survey of five additional cell lines revealed striking variabilities in their individual responses to cholera toxin and dibutyryl cAMP. All were observed to be considerably less sensitive to either agent than rat-1 cells. These data suggest that a cooperative effect involving multiple parameters may be responsible for the observed increases in aerobic lactate production in response to cAMP and that these parameters may vary significantly among cell lines.  相似文献   

16.
Glucose-6-phosphatase (EC 3.1.3.9) activity in human fetal liver remains constant at 8–28 nmoles/min per mg protein from the 8th week of gestation to at least week 28 and this value is approximately 25–35% of that found in the adult. This enzyme activity was well maintained for 2–3 days in organ culture of fetal liver explants. Incubation with dibutyryl cyclic AMP (0.1 mM) and theophylline (0.5 mM) increased glucose-6-phosphatase activity 4–8-fold within 24 h. Theophylline alone was ineffective, but markedly potentiated the effects of dibutyryl cyclic AMP. This increase in enzyme activity was completely abolished by simultaneous incubation with cycloheximide or actinomycin D. Insulin clearly decreased glucose-6-phosphatase activity in control tissues after 24 h incubation and tended to diminish the elevated glucose-6-phosphatase activity which resulted from pre-incubation with dibutyryl cyclic AMP.The smallest specimen obtained (36 mm crown-rump length = 6 weeks gestation) was capable of elevating glucose-6-phosphatase activity more than 3-fold in response to dibutyryl cyclic AMP incubation, suggesting that the human fetal liver has the competence to respond to hormonal agents at a very early stage of development.  相似文献   

17.
We studied the effects of glucagon, dibutyryl cyclic AMP and dexamethasone on the rate of [(14)C]pantothenate conversion to CoA in adult rat liver parenchymal cells in primary culture. The presence of 30nm-glucagon increased the rate by about 1.5-fold relative to control cultures (range 1.4-2.3) and 2.4-fold relative to cultures containing 1-3m-i.u. of insulin/ml. The half-maximal effect was obtained at 3nm-glucagon. Dibutyryl cyclic AMP plus theophylline also enhanced the rate by about 1.5-fold. Dexamethasone acted synergistically with glucagon; glucagon at 0.3nm had no effect when added alone, but resulted in a 1.7-fold enhancement when added in the presence of dexamethasone (maximum effect at 50nm). The 1.4-fold enhancement caused by the addition of saturating glucagon concentrations was increased to a 3-fold overall enhancement by the addition of dexamethasone. However, dexamethasone added alone over the range 5nm to 5mum had no effect on the rate of [(14)C]pantothenate conversion to CoA. The stimulatory effect of dibutyryl cyclic AMP plus theophylline was also enhanced by the addition of dexamethasone. Changes in intracellular pantothenate concentration or radioactivity could not account for the stimulatory effects of glucagon, dibutyryl cyclic AMP or dexamethasone. Addition of 18mum-cycloheximide, an inhibitor of protein synthesis, decreased the rate of incorporation of [(14)C]pantothenate into CoA and the enhancement of this rate by glucagon and dibutyryl cyclic AMP plus theophylline in a reversible manner. These results demonstrate an influence of glucagon, dibutyryl cyclic AMP and glucocorticoids on the intracellular mechanism regulating total CoA concentrations in the liver.  相似文献   

18.
We have compared the effects of cellular cyclic AMP modulation on the regulation of lipoprotein lipase in cultures of rat epididymal pad preadipocytes and mesenchymal heart cells. Addition of dibutyryl cyclic AMP (dibutyryl cAMP) or 3-isobutyl-1-methylxanthine (IBMX) to preadipocytes grown in serum-containing culture medium resulted in a progressive decrease in lipoprotein lipase activity released into the culture medium so that at 6-8 h enzyme activity ranged between 20 and 30% of that recovered in the control dishes. Similar short-term (6-8 h) studies of the heart cell cultures showed a variable and much less pronounced depression of lipoprotein lipase activity. Thus, following dibutyryl cAMP and IBMX treatment, lipoprotein lipase activity ranged between 70 and 95% of control values. Incubation for 6 h with cholera toxin was followed by a 4-fold rise in the concentration of cellular cyclic AMP in both types of culture, but while in heart cell cultures enzyme activity was unchanged, lipoprotein lipase activity in preadipocytes decreased to 30% of control value. After 24 h incubation with all three effectors, an increase in lipoprotein lipase activity was seen. In the preadipocytes the increase ranged between 50 and 150% above control value, in the heart cell cultures it was 100-250%. 24-h incubation of heart cell cultures with dibutyryl cAMP resulted in a 6-fold increase of heparin-releasable lipoprotein lipase activity while residual activity was doubled. The rise in surface-bound lipoprotein lipase was evidenced also by an increase in the lipolysis of chylomicron triacylglycerol. In the presence of cycloheximide, the dibutyryl cAMP-induced heparin-releasable and residual lipoprotein lipase activity declined at the same rate as the basal activity. The reason for the difference in response of cultured preadipocytes and heart cells to the effectors during the first 8 h of incubation has not been elucidated, but could be related to a possible absence of hormone-sensitive lipase in the heart cells, and hence in a difference in intracellular metabolism of triacylglycerol. On the other hand, a common mechanism can be postulated for the long-term effect of cyclic AMP on the induction of lipoprotein lipase activity in both types of cultures. It probably involves mRNA and protein synthesis, which culminates in an increase in enzyme activity.  相似文献   

19.
A novel variant of S49 mouse lymphoma cells is described which is resistant to growth arrest and cytolysis by dibutyryl cyclic AMP but, in contrast to previously described variants, has normal cyclic AMP-dependent protein kinase. The variant is also resistant to N6-monobutyryl cAMP but is sensitive to killing by 8-bromo cAMP and cholera toxin. Extracts of the variant appear to contain wild type levels of both O2'-butyrylesterase and cyclic AMP phosphodiesterase activities. Accumulation of exogenous [3H]dibutyryl cyclic AMP is reduced in the variant suggesting a defect in either uptake or secretion of the analog or its metabolic products. Accumulation of cyclic AMP in variant cells after stimulation of adenylate cyclase with either isoproterenol or cholera toxin is also reduced compared with wild type cells, although cyclase activity of membranes prepared from the variant cells is normal. Extracellular accumulation of cyclic AMP after stimulation of variant cells with isoproterenol is greater than that found with wild type cells. It is concluded that the variant has an alteration in its cyclic AMP secretion mechanism resulting in more efficient extrusion of cyclic AMP than in wild type cells.  相似文献   

20.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号