首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A substantial number of epidemiological studies have shown that small size at birth is associated with an increased risk of developing hypertension and metabolic dysfunction later in life; however these associations have not been found in all studies. In animals, several models have been used to investigate the effects of perturbations to the fetal environment on later arterial pressure, with differing effects on size at birth and arterial pressure. Ovine models include maternal dietary manipulations, antenatal glucocorticoid exposure, and restriction of placental size and function. In our laboratory, we have induced late gestational placental insufficiency and growth restriction in sheep by umbilico-placental embolisation; during the early postnatal period the growth restricted lambs remained small and were hypotensive relative to controls. More recent long-term studies indicate that these growth restricted animals were able to catch up in body weight within the first postnatal year; however, their arterial pressure remained lower than that of controls throughout the first 2 postnatal years (deltaMAP, -4.2 +/- 1.4 mmHg). This relative hypotension may be due to altered vascular or cardiac development resulting from increased vascular resistance or nutrient restriction during fetal life. As late gestational placental insufficiency led to a persistent reduction in arterial pressure from birth to adulthood, our findings do not support the hypothesis that restricted fetal growth per se leads to hypertension after birth. It is likely that the effects of a prenatal compromise on postnatal arterial pressure will vary depending on the nature of the associated developmental perturbations and their gestational timing.  相似文献   

3.
4.
Intrauterine growth restriction (IUGR), along with postnatal growth trajectory, is closely linked with metabolic diseases and obesity at adulthood. The present study reports the time-dependent metabolomic response of male offspring of rat dams exposed to maternal adequate protein diet during pregnancy and lactation (CC) or protein deprivation during pregnancy only (IUGR with rapid catch-up growth, RC) or through pregnancy and lactation (IUGR with slow postnatal growth, RR). Plasma LC-HRMS metabolomic fingerprints for 8 male rats per group, combined with multivariate statistical analysis (PLS-DA and HCA), were used to study the impact of IUGR and postnatal growth velocity on the offspring metabolism in early life (until weaning) and once they reached adulthood (8 months). Compared with CC rats, RR pups had clear-cut alterations in plasma metabolome during suckling, but none at adulthood; in contrast, in RC pups, alterations in metabolome were minimal in early life but more pronounced in the long run. In particular, our results pinpoint transient alterations in proline, arginine, and histidine in RR rats, compared to CC rats, and persistent differences in tyrosine and carnitine, compared to RC rats at adulthood. These findings suggest that the long-term deregulation in feeding behavior and fatty acid metabolism in IUGR rats depends on postnatal growth velocity.  相似文献   

5.
In humans, low birth weight and increased placental weight can be associated with cardiovascular disease in adulthood. Low birth weight and increased placental size are known to occur after fetal alcohol exposure or prenatal glucocorticoid administration. Thus the effects of removing the alcohol-induced increase in maternal corticosterone by maternal adrenalectomy on predictors of cardiovascular disease in adulthood were examined in rats. Alcohol exposure of dams during the last 2 wk of gestation resulted in significantly decreased fetal weight and increased placental weight on gestational day 21. Adult female, but not male, offspring of alcohol-consuming mothers exhibited left ventricular hypertrophy. Placental 11beta-hydroxysteroid dehydrogenase-2 (11beta-HSD-2) mRNA levels, measured by Northern blot, were decreased in females but not males. Adrenalectomy of alcohol-consuming dams reversed the increase in placental weight and the decrease in female placental 11beta-HSD-2 expression and eliminated the left ventricular hypertrophy of adult female offspring. These data suggest that alcohol-induced changes in placental 11beta-HSD-2 mRNA levels and left ventricular weight are coupled in female offspring only and depend on maternal adrenal status.  相似文献   

6.
Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation–lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography–high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming.  相似文献   

7.
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or orofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD.  相似文献   

8.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.  相似文献   

9.
Scientific interest in morbidity in children born small for gestational age (SGA) has increased considerably over the last few decades. The elevated risk of cardiovascular and metabolic diseases in adulthood in individuals born SGA has been well documented, whereas data on gonadal development are limited. Prospective studies, case-control investigations and registry surveys show that impaired intrauterine growth increases the risks of congenital hypospadias, cryptorchidism and testicular cancer approximately two- to threefold. Although few studies focus on the effect of intrauterine growth on male pubertal development, testicular hormone production or sperm quality, available evidence points towards a subtle impairment of both Sertoli cell and Leydig cell function. Animal studies support the hypothesis that impaired perinatal growth restriction, depending on the timing, can affect postnatal testis size and function into adulthood. Current human data, however, are often based on highly selected hospital populations and lack precise distinctions between low birth weight, SGA, timing of growth restriction and a differentiation of catch-up growth patterns. Despite the methodological inadequacies of individual study results, the combined evidence from all data leaves little doubt that fetal growth restriction is associated with increased risk of male reproductive health problems, including hypospadias, cryptorchidism and testicular cancer.  相似文献   

10.
We employed newly developed antagonists, which are specific for endothelin ET(A) receptors, to test whether this drug could mimic the phenotype of the mouse with corresponding gene knock out. Newborn rats, whose dams were given the ET(A) antagonist from day 7 of gestation, exhibited the typical ET(A)-lacking phenotypes like craniofacial abnormalities and major vessel anomalies. Interestingly, craniofacial abnormality was seen in the pups that were exposed to the drug in the mid-gestational period, while another phenotype, patent ductus arteriosus (DA), was seen in the pups that were exposed to the drug in the late gestation.We have focused on the function of the ET system in DA closure after birth because the animals with a genetic defect of ET(A) would die of suffocation shortly after birth. Rat pups were delivered by Caesarean section and were given the antagonist intraperitoneally. The antagonists caused an inhibition of DA closure in vivo at 3 h after birth when DA closure was completed in the control pups. Next, we tested the potential utilities of the ET(A) specific antagonists in tocolysis with NSAIDs which sometimes leads to a closure of fetal DA in utero. Indomethacin administration to rat dams resulted in the constriction of DA in utero which was cancelled by the co-administration of the antagonists. These results suggested that ET(A) plays a physiological role in the postnatal closure of the rat DA in vivo and that ET(A) specific antagonists may be able to leave fetal DA intact during tocolysis with NSAIDs.  相似文献   

11.
In rats, poor fetal growth due to maternal food restriction during pregnancy is associated with decreased beta-cell mass at birth and glucose intolerance in adulthood. Overexposure to glucocorticoids in utero can induce intrauterine growth retardation in humans and animals and subsequent glucose intolerance in rodents. The aims of this study were to investigate whether glucocorticoid overexposure mediates the effect of undernutrition on beta-cell mass and to study their potential role in normally nourished rats. Undernutrition significantly increased maternal and fetal corticosterone levels. Twenty-one-day-old fetuses with undernutrition showed growth retardation and decreased pancreatic insulin content; adrenalectomy and subcutaneous corticosterone implants in their dams prevented the maternal corticosterone increase and restored fetal beta-cell mass. In fetuses with normal nutrition, fetal corticosterone levels were negatively correlated to fetal weight and insulin content; fetal beta-cell mass increased from 355 +/- 48 microg in sham to 516 +/- 160 microg after maternal adrenalectomy; inhibition of steroid production by metyrapone induced a further increase to 757 +/- 125 microg. Our data support the new concept of a negative role of glucocorticoids in fetal beta-cell development.  相似文献   

12.
Prenatal exposure to alcohol causes a wide range of deficits known as fetal alcohol spectrum disorders (FASDs). Many factors determine vulnerability to developmental alcohol exposure including timing and pattern of exposure, nutrition and genetics. Here, we characterized how a prevalent single nucleotide polymorphism in the human brain‐derived neurotrophic factor (BDNF) gene (val66met) modulates FASDs severity. This polymorphism disrupts BDNF's intracellular trafficking and activity‐dependent secretion, and has been linked to increased incidence of neuropsychiatric disorders such as depression and anxiety. We hypothesized that developmental ethanol (EtOH) exposure more severely affects mice carrying this polymorphism. We used transgenic mice homozygous for either valine (BDNFval/val) or methionine (BDNFmet/met) in residue 68, equivalent to residue 66 in humans. To model EtOH exposure during the second and third trimesters of human pregnancy, we exposed mice to EtOH in vapor chambers during gestational days 12 to 19 and postnatal days 2 to 9. We found that EtOH exposure reduces cell layer volume in the dentate gyrus and the CA1 hippocampal regions of BDNFmet/met but not BDNFval/val mice during the juvenile period (postnatal day 15). During adulthood, EtOH exposure reduced anxiety‐like behavior and disrupted trace fear conditioning in BDNFmet/met mice, with most effects observed in males. EtOH exposure reduced adult neurogenesis only in the ventral hippocampus of BDNFval/val male mice. These studies show that the BDNF val66met polymorphism modulates, in a complex manner, the effects of developmental EtOH exposure, and identify a novel genetic risk factor that may regulate FASDs severity in humans.  相似文献   

13.
Intrauterine growth restriction (IUGR) is one of the major causes of short stature in child- and adulthood. The cause of IUGR is unknown, however, an impaired uteroplacental function during the second half of human pregnancy might be an important factor, by affecting the programming of somatotropic axis and leading to postnatal growth failure into adulthood. Two rat models with perinatally induced growth retardation were used to examine the long-term effects of perinatal insults on growth. IUGR rats were prepared from pregnant dams, with a bilateral uterine artery ligation at day 17 of their pregnancy. Since the rat is relatively immature at birth, an early postnatal food restriction model was included as another model to broaden the time window of sensitive period of organogenesis. An individual growth curve was calculated of each animal (n = 813). From these individual growth curves the predicted growth curve for each experimental group was calculated by multilevel analysis. The proposed mathematical model allows us to estimate the growth potentials of these rat models with precision and could provide basic information to investigate the relationships among a number of other variables in future studies. Furthermore, we concluded that both pre- and early postnatal malnutrition leads to irreversible slowing down of postnatal growth.  相似文献   

14.
Steps were taken to eradicate endemic mouse coronavirus from a colony that was part of a behavioral project characterizing the genetics of alcohol sensitivity. This behavioral study was conducted to determine whether changing the uterine or rearing environment (as is integral to common rederivation methods) would have a significant effect on the expression of the behavioral traits in question. Selected breeding pairs of the affected lines were divided into four treatment groups: 1) transfer of embryos to pseudopregnant B6D2F1 female mice, 2) fostering offspring to B6D2F1 dams, 3) fostering offspring to a different dam of the same line, and 4) offspring raised by the birth dam. Embryo transfers were successful only in one affected line. At approximately 50 days of age, the offspring were tested for locomotor behavior after intraperitoneal administration of ethanol or normal saline. There were no statistically significant effects of embryo transfer on the ethanol phenotype (ethanol-induced locomotor depression). Fostering significantly reduced the stimulant response to ethanol of only one mouse line selectively bred for high sensitivity to ethanol-induced stimulation, although the stimulant response of the fostered groups was still quite robust. Overall, the results of this study showed that eradication efforts involving fostering of offspring have a modest impact on the stimulant response to ethanol, but there were insufficient data to draw conclusions regarding the use of embryo transfer.  相似文献   

15.
During early postnatal development, catecholamines are thought to modulate cardiac cell replication and differentiation, and to program future beta-adrenergic sensitivity. To determine if the sensitive period for these events extends to prenatal ages, pregnant rats were infused with propranolol continuously via osmotic minipumps from gestational day 7 through parturition and the offspring were examined for markers of cardiac cellular development (basal ornithine decarboxylase activity and levels of DNA and protein) and for reactivity to acute beta-adrenergic challenge (heart rate responses and stimulation of ornithine decarboxylase). During the propranolol infusion, fetal cardiac responses to terbutaline, a beta-adrenergic agonist, were completely blocked; after discontinuation of beta-blockade at birth, responses became normal and remained unaffected into young adulthood. Biochemical markers indicated a delay in cellular development caused by propranolol: basal ornithine decarboxylase activity was elevated in the fetus and DNA was subnormal for the first week after birth. Cardiac growth was maintained in the face of DNA deficits by cell enlargement (elevated protein/DNA) which persisted through weaning. By young adulthood, all markers were within normal limits. These data suggest that fetal catecholamines, acting on beta-receptors, do play an initial role in cardiac cellular development, but that the critical period for programming of beta-adrenergic responsiveness occurs later in maturation.  相似文献   

16.
Fetal alcohol syndrome (FAS) describes a pattern of dysmorphogenesis observed in some offspring of women who consumed alcohol during pregnancy; partial expression of this pattern are fetal alcohol effects (FAE). The purpose of this investigation was to measure selected craniofacial parameters in the CD-1 mouse fetus following exposure to alcohol on gestational day (D) 8. CD-1 mice were mated for 1 hr; D0.0 designated by the presence of a vaginal plug. On D8, 0 hr, and D8, 4 hr, 33 dams were injected intraperitoneally (IP) with 25% (v/v) alcohol in physiological saline solution (0.015 ml/gm maternal body weight). Appropriate controls were maintained. The animals were sacrificed every 12 hr from D12.0 through D17.0. Implantation sites were examined and recorded as live, dead, or resorbed fetuses. All live fetuses were weighed, examined for gross defects, and fixed in Bouin's solution. Twenty-three bilateral parameters were recorded for linear dimensions defining face and cranium. The fetal weights were statistically lower in treated as compared to control fetuses only on D16.0 through D17.0. Statistical analysis of the morphometrics identified five distinct growth patterns in treated mice as compared to controls. The anomalies induced in the CD-1 mouse fetus following exposure to alcohol on D8.0 resembled FAE rather than FAS. Morphometric analysis of the craniofacial region may be an important clinical tool for the quantitative identification of alcohol-related effects in the offspring of women who consumed alcohol while pregnant.  相似文献   

17.
The initial diagnosis of fetal alcohol syndrome (FAS) in the United States was made because of the facial features common to the first cohort of patients. This article reviews the development of an FAS mouse model whose craniofacial features are remarkably similar to those of affected humans. The model is based on short-term maternal treatment with a high dosage of ethanol at stages of pregnancy that are equivalent to Weeks 3 and 4 of human gestation. At these early stages of development, alcohol's insult to the developing face is concurrent with that to the brain, eyes, and inner ear. That facial and central nervous system defects consistent with FAS can be induced by more "realistic" alcohol dosages as illustrated with data from an oral alcohol intake mouse model in which maternal blood alcohol levels do not exceed 200 mg/dl. The ethanol-induced pathogenesis involves apoptosis that occurs within 12 hrs of alcohol exposure in selected cell populations of Day 7, 8, and 9 mouse embryos. Experimental evidence from other species also shows that apoptosis underlies ethanol-induced malformations. With knowledge of sensitive and resistant cell populations at specific developmental stages, studies designed to identify the basis for these differing cellular responses and, therefore, to determine the primary mechanisms of ethanol's teratogenesis are possible. For example, microarray comparisons of sensitive and resistant embryonic cell populations have been made, as have in situ studies of gene expression patterns in the populations of interest. Studies that illustrate agents that are effective in diminishing or exacerbating ethanol's teratogenesis have also been helpful in determining mechanisms. Among these agents are antioxidants, sonic hedgehog protein, retinoids, and the peptides SAL and NAP.  相似文献   

18.
Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma. The effect on PPARbeta is seen as an increase in mRNA degradation, as assessed by run-off assays, due to a significant decrease in PPARbeta mRNA half-life, with no observed changes in intracellular localization. Our results suggest a possible link between PPARbeta function and ethanol-induced abnormal myelination in oligodendrocytes.  相似文献   

19.
Prenatal and early postnatal life experiences, reflected by size at birth and postnatal catch-up growth, contribute to the risk of developing the metabolic syndrome in adulthood, but their relative importance is unclear. Therefore, we determined the effects of restricted placental and fetal growth on components of the metabolic syndrome in young adult sheep and the relationships of the latter to size at birth and early postnatal growth. Fasting plasma metabolites, glucose tolerance (by intravenous glucose tolerance test, IVGTT), insulin secretion and sensitivity, and resting blood pressure were measured in 22 control and 20 placentally restricted (PR) 1-yr-old sheep. In male sheep, PR increased the initial rise in glucose during an IVGTT and reduced diastolic blood pressure, and small size at birth independently predicted reduced adult size, glucose tolerance, and fasting plasma insulin and insulin disposition of glucose metabolism but increased insulin disposition of circulating FFAs. Also in males, high fractional growth rates in early postnatal life independently predicted impaired early glucose clearance during an IVGTT. In female animals, PR increased insulin sensitivity of glucose metabolism and reduced fasting plasma FFAs, and thinness at birth predicted increased adult size, fasting blood glucose, and pulse pressure. In conclusion, PR and small size at birth are associated with more components of the metabolic syndrome in adult male than in adult female sheep, with few independent effects of early postnatal growth. These sex differences in the onset and extent of adverse metabolic consequences after prenatal restraint in the sheep are consistent with observations in humans.  相似文献   

20.
To investigate the early renal alterations due to severe maternal protein restriction (MPR) Wistar dams received 23% (normal protein, NP) or 5% (low protein, LP) chow during gestation and lactation periods. In NP offspring at birth, the cortex-to-medulla (C/M) ratio was 35% greater in female than in male offspring and the mature/immature glomeruli ratio was lower in both sexes of LP offspring than in the matched NP ones (by 20%). At birth and at weaning the kidney of the LP offspring showed fewer glomeruli (40% less) than the age-matched NP offspring. The NP female offspring had almost 20% fewer glomeruli than the matched male offspring. At weaning, the number of glomeruli was positively correlated with BM at birth (R=0.86; P<0.001). The effects of gender and maternal protein restriction, both individually and overall, based on biometrical and stereological parameters were: day 1, MPR largely responsible for the majority of alterations observed in LP groups, however gender influenced C/M ratio; day 21, MPR and gender interacted and modified the number of glomeruli per kidney. The early adverse of MPR effect on renal development is disproportionate between mature and immature glomeruli at birth leading to fewer glomeruli at weaning. This supports epidemiological data in humans underlying why fetuses with low birth weight carry an increased risk of mortality from chronic diseases in adulthood, including hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号