共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The adenohypophysial primordium of Xenopus laevis tadpoles at stages 33/34 to 46 (Nieuwkoop and Faber, 1956) were examined immuno-histologically for -MSH, -MSH and ACTH. -MSH was demonstrated from stage 37/38 onwards, and -MSH from stage 39. No signs of ACTH production were detected. -MSH and -MSH occurred in the same cells. No differences were found in the intensity of immunofluorescence between tadpoles which were kept on a black and a white background. The present study lends no support to the hypothesis concerning the derivation of -MSH from ACTH. The observations made suggest that the morphological formation of the pars intermedia is accomplished during stages 37/38 to 39.
Acknowledgement. The authors express warm thanks to Dr. M.P. Dubois (Laboratoire de Physiologie de la Reproduction, INRA, Nouzilly, France), who prepared and verified the antibodies. Grants from Swedish Natural Science Research Council and Landshovding Per Westlings minnesfond, Lund, Sweden are gratefully acknowledged 相似文献
2.
Dr. N. Erik I. Nyholm 《Cell and tissue research》1977,180(2):223-230
Summary The adenohypophyses of Xenopus laevis tadpoles at developmental stages 20 to 46 (Nieuwkoop and Faber, 1956) were studied. From its first appearance at about stage 20 to 21, the adenohypophysial primordium passes through four morphogenetic phases, each characterized by internal events. The first phase (stages 20 to about 33/34) is characterized by extensive proliferation of the primordium. During the second phase (stages 33/34 to about 37/38), the growth of the primordium is arrested. This arrest coincides with the attainment of secretory function. The primordium is claviform in shape at these stages. The third phase, roughly stage 39, is characterized by a thorough reorganization of the adenohypophysial cells, leading to the formation of the pars distalis and pars intermedia. The shape of the primordium changes, and its volume temporarily increases. The last phase is characterized by the organization of the pars distalis cells into cell cords which possibly demonstrate a functional relation to a specialized region (the hilus) of the adenohypo-physis-brain interspace.
Acknowledgements. Grants from the Faculty of Mathematics and Science, University of Lund, the Royal Physiographic Society, Lund, and the Swedish Natural Sience Research Council are gratefully acknowledged 相似文献
3.
Summary For the study of the hypothalamo-hypophysial system of Xenopus laevis tadpoles, hypothalamic lesions were made by means of the electrocoagulation technique. Lesioning of the ventral region of the preoptic nucleus resulted in a decrease of the number of ACTH cells in the pars distalis of the pituitary gland and in a diminution of the PAS-positive reaction of these cells. In addition, regeneration of the neurosecretory cells of the ventral region of the preoptic nucleus observed 6 weeks after lesioning was accompanied by the reappearance of normal PAS-positive ACTH cells in the pars distalis. It is suggested that the neurosecretory cells of the ventral region of the preoptic nucleus of Xenopus laevis tadpoles are related to the ACTH synthesizing cells, probably by producing CRF.Dedicated to Prof. Dr. med. W. Bargmann on the occasion of his 70th birthdayThe authors thank Prof. Dr. J.C. van de Kamer for his interest, Prof. Dr. P.G.W.J. van Oordt for his many helpful comments, and Messrs. H. van Kooten, E. van der Vlist, J.J. van der Vlis and M.C.A. van Pinxteren for preparing the illustrations 相似文献
4.
In three repeated experiments with three different litters of Xenopus laevis (Daudin) tadpoles, three cohorts were reared in an aquarium under the "saw-tooth" magnetic field produced by a television set. Their maturation times are compared with those of three corresponding control cohorts grown in an unexposed aquarium. In the exposed aquarium, the magnetic field amplitude was less than 25 T and the frequency in the extremely-low-frequency and very-low-frequency wavebands. Neither the exposed nor the unexposed cohorts suffered significant mortality and malformations. However, the exposed tadpoles took about 5 days more than the unexposed ones to reach metamorphosis. The differences in mean maturation times between the exposed and control cohorts were extremely significant (P < 0.001). The results show that a biological population can suffer a sublethal effect when exposed to the magnetic field of a TV set for a long time in the course of juvenile life stages, and that this effect can consist of a delay in reaching the adult stage. 相似文献
5.
Summary To identify the monoamine (s) produced in the paraventricular organ (PVO) and the nucleus infundibularis dorsalis (NID) of Xenopus laevis tadpoles, formaldehyde-induced fluorescence in these hypothalamic structures was analysed by microspectrofluorometric techniques. Reference values were obtained by recording excitation and emission spectra of fluorescence in monoamine containing protein models. The maxima of the excitation and emission spectra, both under normal conditions and after treatment with HCl vapour, indicate the presence of dopamine. Based on a number of emission spectra, the PVO and NID might also contain serotonin. With regard to the functional significance of dopamine produced in the hypothalamic nuclei, it may be concluded that the catecholamine is probably identical with the melanotropin inhibiting factor (MIF).The authors wish to thank Prof. Dr. P.G.W.J. van Oordt for his stimulating interest and support. The skillful assistance and valuable contributions of Miss A. G. Fennema and Miss M.G.A. de Bruyn are gratefully acknowledged. Many thanks are due to Prof. Dr. A. Oksche for the opportunity of performing measurements on fluorescence, during a visit to his institute (Zentrum für Anatomie und Cytobiologie, Gießen, BRD). The measurements were carried out by Dr. H.-G. Hartwig, whose help and advice are highly appreciated. 相似文献
6.
Barbara Claas Jeffrey Dean 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2006,192(10):1021-1036
Separately delivered visual and lateral line stimuli elicit similar but not identical orientation and approach by intact, sighted Xenopus. Response frequencies for visual stimuli declined sharply for distant or caudal stimuli while those for lateral line stimuli changed little. Turn angles correlated highly with stimulus angles but were smaller on average, so regression slopes were less than one. Regression slopes were smaller for visual than for lateral line stimuli, but this apparent difference was due to different distributions of stimulus distance interacting with the toad’s rotation center. Errors in final headings, most often under-rotations, did not differ by modality. Frequencies of lunges and arm capture movements were higher for visual stimuli both overall and especially for rostral proximal stimuli. The results demonstrate accurate orientation by sighted Xenopus to visual and lateral line stimuli; they are consistent with expectations based on in-register tectal maps. Orientation to lateral line stimuli is similar to previous results with blinded animals, revealing no heightened acuity in the latter. Modality differences indicate that the lateral line system is better for omnidirectional orientation and approach to distant stimuli whereas the visual system is more attuned to nearby rostral stimuli and more apt to mediate strikes.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . 相似文献
7.
Summary The distribution of monoamine oxidase (MAO) in the brain of Xenopus laevis tadpoles (stage 52–56) was studied histochemically with a modified Glenner's tryptamine-tetrazolium method. A moderate activity was observed in fibre regions of the striatum and septum (including the medial and lateral forebrain bundles), in the neuropil of the nucleus amygdalae, in the commissura anterior and commissura hippocampi, in the fibre regions of the diencephalon (including the optic chiasma), in the fibre regions of the tectum opticum and the tegmentum of the mesencephalon and in the white substance of the ventral half of the medulla oblongata. A greater MAO activity was found in the neuropil of the entire nucleus praeopticus. In the partes anterior and magnocellularis of this nucleus, MAO positive fibres are present in close contact with the perikarya, indicating a monoaminergic innervation of these neurons. The perikarya themselves did not show MAO activity. In the neurons of the nucleus praeopticus epichiasmaticus, the paraventricular organ (PVO) and nucleus infundibularis dorsalis (NID), only a slight MAO activity has been demonstrated in the perikarya, whereas a strong MAO positivity was found in the intraventricular protrusions and the neuropil. These data indicate the aminergic character of the neurons of these nuclei. From the postoptic fibre region a MAO positive tract was observed towards the developing median eminence and pars intermedia of the hypophysis. The pars nervosa and some cells of the pars distalis also contained MAO. Along the border of the aquaeduct of Silvius and the fourth ventricle, MAO positive liquor-containing neurons are also present.The distribution of acetylcholinesterase (AChE) was investigated in the hypothalamohypophysial region. AChE activity was found in the neuropil of the nucleus praeopticus magnocellularis, in the fibres of the optic chiasma and in the postoptic fibre region. The neurons of the PVO and NID were AChE negative. An AChE positive tract could be traced from the postoptic fibre region to the developing median eminence and pars nervosa. The pars distalis did not show AChE activity. However, in tadpoles reaching the metamorphic climax, ChE activity appeared in certain cells of the pars distalis; this might be related to degenerative phenomena in the acidophilic cells. The absence of AChE activity in the pars intermedia indicates a regulation of MSH release by peptidergic nerves to be unlikely.The stimulating interest and helpful advice of Prof. Dr. P. G. W. J. van Oordt is gratefully acknowledged. Thanks are also due to Mr. H. van Kooten and his co-workers for making the photographs. 相似文献
8.
Dr. R. Seldenrijk D. R. W. Hup P. N. E. de Graan F. C. G. van de Veerdonk 《Cell and tissue research》1979,198(3):397-409
Summary Melanophores from tadpoles of Xenopus laevis (Daudin) were isolated by digestion of tail fins with acetyltrypsin and collagenase and maintained in primary culture for 6 weeks up to 3 months. Within 36 to 72 h the melanophores develop one to eight dendritic processes per cell; secondary and tertiary branchings of the processes were frequently observed. The melanophores in primary culture disperse under the influence of -MSH or cyclic AMP; upon rinsing out these substances the cells aggregate. In darkness, about 40 % of the cells disperse their pigment, whereas under illumination the pigment of the melanophores aggregates. To date, attempts to initiate cell division in melanophores have not been successful. 相似文献
9.
R. Seldenrijk W. Berendsen D. R. W. Hup F. C. G. van de Veerdonk 《Cell and tissue research》1980,211(2):179-189
Summary Tail-fin melanophores of tadpoles of Xenopus laevis (Daudin) in primary culture were examined scanning electron microscopically in the aggregated and in the dispersed state. After isolation, the melanophores are spherical, but within 24 h they develop thin filopodia for attachment to the substratum. Subsequently, cylinder-like as well as flat sheet-like processes are formed, which adhere to the substratum with terminal pseudopodia and filopodia. The processes of adjacent melanophores contact each other, thus forming an interconnecting network between the melanophores.In the aggregated state the central part of the melanophore is spherical and voluminous. Both the central part and the processes bear microvilli. In melanophores with dispersed melanosomes the central part is much flatter; the distal parts have a thickness that equals a monolayer of melanosomes. The surface of the cell bears only scarce microvilli.These features indicate that melanophores do not have a fixed shape and that pigment migration is accompanied by reciprocal volume transformation between the cell body and its processes. 相似文献
10.
Summary Rabbit antiserum to synthetic LHRH was used with the immunofluorescence technique to identify the LHRH-secreting neurons and their axonal pathways in the brain of Xenopus laevis. Three groups of immunoreactive neurons were identified: the first, in the telencephalon, is a paired group of cells scattered near the two telencephalic ventricles; the second group lies near the preoptic recess; the third group occurs in the ventral wall of the infundibulum. Two principal neuronal pathways were observed: Fibres originating from the dorsally located telencephalic neurons converge on the cephalic median plane where they form a single bundle behind the telencephalic furrow. This bundle descends towards the anterior border of the preoptic recess where it divides into two nerve bundles which pass on either side of the preoptic recess, run above the optic chiasma then cross the infundibular floor and finally terminate in the median eminence. The second pathway is more direct. The more ventrally located telencephalic LHRH cells give rise to this second pathway. Their axons converge with the other LHRH fibres near the lateral border of the preoptic recess. Most of the LHRH nerve fibres terminate in the median eminence although some terminate near the paired pars tuberalis. No reaction was observed after the use of antiserum absorbed with synthetic antigen.Equipe de Recherche associée C.N.R.S. n 492. This work was financed by the D.G.R.S.T., Contract n 7470046 相似文献
11.
Denyse Moriceau-Hay Jeannine Doerr-Schott Maurice P. Dubois 《Cell and tissue research》1982,225(1):57-64
Summary By use of the immunofluorescence technique TSH-, LH- and ACTH-cells were localized in the hypophysis of tadpoles of Xenopus laevis. The first signs of the activity of these cells were observed in early stages of the development, i.e., stage 39 for ACTH, and stage 42 for TSH and LH. 相似文献
12.
13.
U. Katz W. Hanke 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1993,163(3):189-195
The acclimation of the clawed toad Xenopus laevis to hyperosmotic solutions of NaCl (balanced solution of sea salt), urea or mannitol was studied. The animals could not be acclimated to salt solutions more concentrated centrated than 400 mosm·l-1. Urea was tolerated till 500 mmol·l-1. Plasma osmolality was always hyperosmotic to the environmental solution, but with diminished osmotic gradient at the highest tolerated solutions. Plasma urea concentration approached 90 mmol·l-1, similar in the three solutions of acclimation. Urine volume was very small under all conditions. Serum aldosterone and corticosterone did not differ significantly, although there was a slight tendency towards lower aldosterone in the NaCl solution. In vivo water uptake in tap water acclimated animals was very small, and was higher in the other groups. Only the salt- and urea-acclimated, but not the tap water and mannitol-acclimated groups responded with a clear increase following injection of oxytocin or theophylline. In vitro urea fluxes were similar and invariable in both directions under all conditions. No significant effect of theophylline was observed. Sodium transport measured by the short-circuit technique in vitro was lower in salt- and mannitol-acclimation conditions, and was stimulated significantly under all conditions in response to serosal oxytocin or theopylline. It is concluded that Xenopus laevis can osmoregulate at a limited range of external solutions. It is limited in the increase of its plasma urea concentration; the transport properties of the skin do not change very much upon acclimation, except for the hydroosmotic response to oxytocin.Abbreviations
I
sc
short circuit current
- PD
potential difference
- SW
balanced sea water
- TW
tap water 相似文献
14.
Summary Migration of bilayered epidermal cell sheets out of explants of tadpole tails (Xenopus laevis) were investigated with time-lapse cinemicrography using reflection-contrast optics. Cell-sheet formation begins beneath the explant in a region where it is closely attached to the coverslip. A single basal cell extends a lamellipodium through the outer (surface) epidermal layer and starts moving in a direction free of attached cells. This cell remains connected to the following basal cell, which the also extends a lamellipodium onto the glass. The cell sheet develops as increasingly more adjacent basal cells start to migrate. Surface cells do not actively locomote but they remain attached to the basal cells and to adjacent surface cells. Thus, they are transported as an intact cell layer, and consequently the in situ arrangement of the tadpole epidermis is largely preserved in the cell sheet, i.e., basal cells adhere to the substratum and are covered by outer cells (surface cells) which face the culture medium. Basal cells extend lamellae beneath the rear end of the preceding cell, which is slightly fifted off the substratum. The direction of locomotion is determined by the frontal cells. Cell-sheet enlargement and locomotion cease when all the epidermal cells facing the coverslip have left the explant, and the cell sheet and epidermis covering the explant form a continuous layer. 相似文献
15.
S. Bernardini S. M. Cannata G. La Mesa S. Filoni 《Development genes and evolution》1996,205(5-6):252-259
Regenerated hindlimbs of larval Xenopus laevis were reamputated at critical larval stages and levels, viz when amputation of the control limb at the same larval stage and level is followed by reduced regeneration. Reamputations were performed at the level of (1) the original plane of amputation, (2) the early regenerate (cone/palette stage), (3) the late regenerate (digit stage). Reamputation increased both the percentage rate of regeneration and the morphological complexity of the regenerates in all experimental series. Cell counts in lateral motor columns and spinal ganglia innervating the hindlimb, together with histological observations and mitotic index and labelling index determinations in reamputated and control limbs showed that improved regeneration in the reamputated limb was related to an increase in undifferentiated and proliferating cells in the stump. We did not find any evidence suggesting that renewed regeneration in reamputated anuran limbs results from an increase in innervation, as has previously been hypothesized. We support our conclusions by demonstrating an improvement in regenerationen in the reamputated and denervated hindlimbs. 相似文献
16.
Summary Cellular differentiation and migration in the fundic glands of adult and larval Xenopus laevis have been examined using bromodeoxyuridine-immunohistochemistry. In the adult fundic gland, cumulative labeling with bromodeoxyuridine revealed a proliferative cell zone between the surface mucous cells and mucous neck cells, in what is referred to as the neck portion of the gland. The labeling-index of mucous neck cells had rapidly increased by week-5. The labeling-index of oxynticopeptic cells showed a more delayed increase until week-7, coincident with the decrease in the labeling of mucous neck cells. In the immature fundic glands of larvae, the labeled proliferating cells were randomly distributed throughout the developing gastric mucosa. During metamorphosis, the labeling-index of immature epithelial cells was highest at stage 63. Following administration of bromodeoxyurdine at this, stage, there was no significant loss of labeled epithelial cells during the metamorphosing period. Furthermore, there was no significant difference in the labeling-indices among the epithelial cells, such as surface mucous cells/generative cells, mucous neck cells, and oxynticopeptic cells, 7 days after administration. Cellular differentiation and migration pathways of epithelial cells in the fundic gland of adult X. laevis and its larvae are discussed. 相似文献
17.
Dana-Lynn T. Koomoa Mark W. Musch Leon Goldstein 《The Journal of membrane biology》2006,208(3):241-250
When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced
taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these
cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced
taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel.
The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic
osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study
the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1
was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1.
Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation
of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1. 相似文献
18.
Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development 总被引:1,自引:0,他引:1
Amphibian embryos have served as a model system for vertebrate axial patterning for more than a century. Recent changes to the Xenopus laevis fate map revised the assignment of the embryonic dorsal/ventral (back-to-belly) axis in pre-gastrula embryos and allowed the assignment of the rostral/caudal (head-to-tail) axis for the first time. Revising the embryonic axes after many years of experimentation changes our view of axial patterning in amphibians. In this review, we discuss the revised maps and axes, and show by example how the new map alters the interpretation of three experiments that form the foundations of amphibian embryology. We compare the revised amphibian fate map to the general maps of the protochordates, and discuss which features of the maps and early development are shared by chordates and which distinguish vertebrates. Finally, we offer an explanation for the formation of both complete and incomplete axes in the rescue assays routinely used to study axial patterning in Xenopus, and a model of amphibian axial patterning. 相似文献
19.
Akane Tonegawa Megumi Moriya Masazumi Tada Shinichiro Nishimatsu Chiaki Katagiri Naoto Ueno 《Development genes and evolution》1996,205(5-6):282-289
To elucidate the mechanisms of early heart morphogenesis in Xenopus laevis, we examined the effect of endoderm on heart morphogenesis in the early Xenopus neurula. Explants of anterior ventral (presumptive heart) mesoderm from early neurula were cultured alone or in combination with endoderm dissected from various regions. Heart formation was scored by an original heart index based on morphology. These explant studies revealed that anterior ventral endoderm plays a critical role in heart morphogenesis. Furthermore, we found that it was possible to confer this heart-forming ability on posterior ventral endoderm by the injection of poly(A)+ RNA from stage 13 anterior endoderm. These results imply that the heart formative factor(s) is localized in the anterior endoderm of the early neurula and that at least part of this activity is encoded by mRNA(s). 相似文献
20.
The capacity of amputated early and late limbs of larval Xenopus laevis to promote lens-forming transformations of corneal implants in the absence of a limb regeneration blastema has been tested by implanting outer cornea fragments from donor larvae at stage 48 (according to Nieuwkoop and Faber 1956), into limb stumps of larvae at stage 52 and 57. Blastema formation has been prevented either by covering the amputation surface with the skin or by reconnecting the amputated part to the limb stump. Results show that stage 52 non-regenerating limbs could promote lens formation from corneal implants not only when innervated but also when denervated. A similar result was observed in stage 57 limbs where blastema formation was prevented by reconnecting the amputated part to the stump. In this case, relevant tissue dedifferentiation was observed in the boundary region between the stump and the autografted part of the limb. However, stage 57 limbs, where blastema formation was prevented by covering the amputation surface with skin, could promote lens formation from the outer cornea only when innervated. In this case, no relevant dedifferentiation of the stump tissues was observed. These results indicate that blastema formation is not a prerequisite for lens-forming transformations of corneal fragments implanted into amputated hindlimbs of larval X. laevis and that lens formation can be promoted by factors delivered by the nerve fibres or produced by populations of undifferentiated or dedifferentiated limb cells. 相似文献