首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most probable initial reaction between NO and O2 is direct addition to give the peroxyl radical ONOO. In view of the potential importance of this radical in biology, we have searched extensively for its formation, using EPR spectroscopy and rapid freezing techniques. At best, only extremely low concentrations were detected, and in most systems, no signals were detectable. We conclude that this radical is unlikely to be of major importance per se in biological systems, in contrast with its one electron adduct, the peroxynitrite anion.  相似文献   

2.
The reaction of hydrogen peroxide H(2)O(2) with horse heart metmyoglobin (HH metMb), sperm whale metmyoglobin (SW metMb) and human metHb (metHbA) was studied at pH 6-8 by low temperature (10 K) EPR spectroscopy with the emphasis on the peroxyl radicals formed during the reaction. The same type of peroxyl radical was found in both myoglobin systems, as was concluded from close similarities in the spectroscopic properties of the radicals and in their kinetic dependences. This is consistent with previous reports of the peroxyl radical being localised on the Trp14 of SW and HH myoglobins. There are two types of peroxyl radical found in the metHbA/H(2)O(2) system, one (ROO-I) having spectral parameters, kinetic and pH dependences similar to those of the peroxyl radical found in both myoglobin systems. The other peroxyl radical (ROO-II) found in metHbA treated with H(2)O(2) has slightly different, though distinguishable, spectral parameters and a significantly different kinetic dependence as compared to those of the peroxyl radical common for all three proteins studied (ROO-I). The concentration of ROO-I radical formed in the three proteins on addition of H(2)O(2) correlates with the effectiveness of incorporating molecular oxygen into styrene oxide reported before for these three proteins. It is shown that a different distance from Trp14 to haem iron in the three proteins might be the structural basis for the different yield of the peroxyl radical and the different efficiency of incorporation of molecular oxygen into styrene. The site of the peroxyl radical found only in metHbA (ROO-II) is speculated to be the Trp37 residue of the beta-subunit of HbA.  相似文献   

3.
The reaction between metmyoglobin and hydrogen peroxide results in the two-electron reduction of H2O2 by the protein, with concomitant formation of a ferryl-oxo heme and a protein-centered free radical. Sperm whale metmyoglobin, which contains three tyrosine residues (Tyr-103, Tyr-146, and Tyr-151) and two tryptophan residues (Trp-7 and Trp-14), forms a tryptophanyl radical at residue 14 that reacts with O2 to form a peroxyl radical and also forms distinct tyrosyl radicals at Tyr-103 and Tyr-151. Horse metmyoglobin, which lacks Tyr-151 of the sperm whale protein, forms an oxygen-reactive tryptophanyl radical and also a phenoxyl radical at Tyr-103. Human metmyoglobin, in addition to the tyrosine and tryptophan radicals formed on horse metmyoglobin, also forms a Cys-110-centered thiyl radical that can also form a peroxyl radical. The tryptophanyl radicals react both with molecular oxygen and with the spin trap 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) traps the Tyr-103 radicals and the Cys-110 thiyl radical of human myoglobin, and 2-methyl-2-nitrosopropane (MNP) traps all of the tyrosyl radicals. When excess H2O2 is used, DBNBS traps only a tyrosyl radical on horse myoglobin, but the detection of peroxyl radicals and the loss of tryptophan fluorescence support tryptophan oxidation under those conditions. Kinetic analysis of the formation of the various free radicals suggests that tryptophanyl radical and tyrosyl radical formation are independent events, and that formation of the Cys-110 thiyl radical on human myoglobin occurs via oxidation of the thiol group by the Tyr-103 phenoxyl radical. Peptide mapping studies of the radical adducts and direct EPR studies at low temperature and room temperature support the conclusions of the EPR spin trapping studies.  相似文献   

4.
Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase   总被引:1,自引:0,他引:1  
M J Nelson  S P Seitz  R A Cowling 《Biochemistry》1990,29(29):6897-6903
Samples of purple lipoxygenase prepared by addition of either 13-hydroperoxy-9,11-octadecadienoic acid or linoleic acid and oxygen to ferric lipoxygenase contain pentadienyl and/or peroxyl radicals. The radicals are identified by the g values and hyperfine splitting parameters of natural abundance and isotopically enriched samples. The line shapes of their EPR spectra suggest the radicals are conformationally constrained when compared to spectra of the same radicals generated in frozen linoleic acid. Further, the EPR spectra are unusually difficult to saturate. The radicals are stable in buffered aqueous solution at 4 degrees C for several minutes. All of this implies that these species are bound to the enzyme, possibly in proximity to the iron. Only peroxyl radical is seen when the purple enzyme is generated with either hydroperoxide or linoleic acid in O2-saturated solutions. Addition of natural abundance hydroperoxide under 17O-enriched O2 leads to the 17O-enriched peroxyl radical, while the opposite labeling results in the natural abundance peroxyl radical, demonstrating the exchange of oxygen. Both radicals are detected in samples of purple lipoxygenase prepared with either linoleic acid or hydroperoxide under air. Addition of the hydroperoxide in the absence of oxygen favors the pentadienyl radical. We propose that addition of either linoleic acid or hydroperoxide to ferric lipoxygenase leads to multiple mechanistically connected enzyme complexes, including those with (hydro)peroxide, peroxide, peroxyl radical, pentadienyl radical, and linoleic acid bound. This hypothesis is essentially identical with the proposed radical mechanism of oxygenation of polyunsaturated fatty acids by lipoxygenase.  相似文献   

5.
The reactions of cerium(IV) and the hydroxyl radical [generated from iron(ii)/H2O2] with bovine serum albumin (BSA) have been investigated by EPR spin trapping. With the former reagent a protein-derived thiyl radical is selectively generated; this has been characterized via the anisotropic EPR spectra observed on reaction of this radical with the spin trap DMPO. Blocking of the thiol group results in the loss of this species and the detection of a peroxyl radical, believed to be formed by reaction of oxygen with initially-generated, but undetected, carbon-centred radicals from aromatic amino acids. Experiments with a second spin trap (DBNBS) confirm the formation of these carbon-centred species and suggest that damage can be transferred from the thiol group to carbon sites in the protein. A similar transfer pathway can be observed when hydroxyl radicals react with BSA.

Further experiments demonstrate that the reverse process can also occur: when hydroxyl radicals react with BSA, the thiol group appears to act as a radical sink and protects the protein from denaturation and fragmentation through the transfer of damage from a carbon site to the thiol group. Thiol-blocked BSA is shown to be more susceptible to damage than the native protein in both direct EPR experiments and enzyme digestion studies. Oxygen has a similar effect, with more rapid fragmentation detected in its presence than its absence.  相似文献   

6.
The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50μs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50μs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".  相似文献   

7.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

8.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

9.
In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) di-hydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidyl-choline (PC) liposomes containing negatively charged lipids—dicetyl phosphate (DCP) or cardiolipin (CL)—and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by buty-lated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, vali-nomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidyl-choline (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.  相似文献   

10.
-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) radical adducts from Folch (chloroform:methanol) extraction of blood of transplanted livers exhibited a large 6-line electron paramagnetic resonance (EPR) spectrum. Slow EPR sample preparation involving freezing and thawing prior to extraction over 15 min yielded a spectrum assigned as a lipid-derived free radical species, whereas rapid (< min) extraction without a freeze-thaw cycle yielded a mixture of radicals, one with coupling constants similar to the -hydroxymethyl-4-POBN adduct (4-POBN/.CH2OH). Extraction with purified chloroform, however, yielded a much weaker, probably lipid-derived signal. Use of 13C-methanol in the Folch extracting solution yielded a 12-line EPR spectrum, indicating that a new, highly reactive oxidant species from blood following liver transplantation can convert organic solvents used in tissue extractions to free radicals. This hypothesis was supported by simulation of EPR spectra of free radicals extracted rapidly with Folch, which indicated that the spectrum contained two carbon-centered species, one with hyperfine coupling constants similar to the -methylhydroxyl-4-POBN adduct, the other probably lipid-derived. Because the former originates from methanol in the Folch, extraction of samples with alcohol-free organic solvent is most likely superior when the potential for formation of stable oxidant species exists, such as after liver transplantation.  相似文献   

11.
The spin-trapping technique has demonstrated that carbon-centered radicals are produced during soluble-methane-monooxygenase catalysis of the hydroxylation of several different types of substrate. The resulting spin-adducts were identified from the hyperfine splitting constants in their EPR spectra. Isotopic labelling showed unequivocally that the trapped radicals were derived from substrate. The carbon-centered substrate radicals are believed to result from hydrogen-atom abstraction by a ferryl species in a cytochrome-P-450-like mechanism. No hydroxy radical nor an oxygen-based radical of any kind was detected in any of the spin-trapping experiments.  相似文献   

12.
The generation of hydroxyl radicals by rat liver microsomes was monitored by spin trapping with 5, 5-dimethylpyrroline N-oxide (DMPO). The results confirm and extend previous data which demonstrated that hydroxyl radicals are produced by microsomes in the presence of NADPH and O2, and without the exogenous addition of iron. No EPR signals could be detected unless catalase activity which was associated with the microsomes could be substantially diminished. Addition of azide was the most effective means of eliminating catalase activity, but azide also reacted rapidly with hydroxyl radicals, forming azidyl radicals which were in turn trapped by DMPO. Extensive washing and preincubation of microsomes with 3-amino-1, 2,4-triazole in the presence of H2O2 were evaluated as alternative methods of decreasing the catalase contamination of microsomes. Although neither method completely eliminated microsomal catalase activity, addition of azide was no longer necessary for hydroxyl radical detection with DMPO. When highly washed microsomal preparations were tested, weak signals of the superoxide radical adduct of DMPO could also be detected. These data indicate that the sensitivity of spin trapping in microsomal systems can be improved substantially when care is taken to eliminate cytosolic contaminants such as catalase.  相似文献   

13.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

14.
The reaction of metmyoglobin with equimolar concentrations of hydrogen peroxide has been studied using both electron spin resonance (e.s.r.) and optical spectroscopy. Using the former technique a strong anisotropic e.s.r. signal is observed, in the presence of the spin trap DMPO, which decays relatively rapidly. This previously unobserved signal, which is also observed on reaction of metmyoglobin with a number of other powerful oxidants (peracetic acid, 3-chloroperoxybenzoic acid, monoperoxyphthalic acid, iodosyl benzene, 1BuOOH and cumene hydroperoxide) is assigned to a slowly-tumbling, metmyoglobin-derived, spin adduct. The parameters of this signal (aN 1. 45, aH 0.83 mT) are consistent with the trapped radical having a heteroatom centre; this is believed to be oxygen. The concentration of this species is not affected by compounds such as 2-deoxyribose, mannitol and phenylalanine which are all efficient hydroxyl radical scavengers, demonstrating that the formation of this radical is not due to reaction of “free” HO· generated by breakdown of H2O2, by released iron ions. The concentration of this species is however decreased by desferal, ascorbate, Trolox C, salicylate and, to a lesser extent, linoleic acid; with the first three of these compounds further substrate-derived radicals are also observed. Examination of similar reaction systems (though in the absence of DMPO) by optical spectroscopy shows that the myoglobin (IV) species is formed and that this species behaves in a somewhat different manner with these added compounds. These results suggest that the radical trapped in the e.s.r. experiments is a myoglobin-derived species, probably a tyrosine peroxyl radical, arising from oxidative damage to the globin moiety.

The diminution of both the e.s.r. signal of the spin adduct and the optical absorption of the myoglobin (IV) species in the presence of linoleic acid suggests that these myoglobin-derived species can initiate oxidative damage but that this process can be ameliorated by the presence of a number of water-soluble compounds such as ascorbate, Trolox C, desferal and salicylate.  相似文献   

15.
To clarify the nature of cytocidal molecular species among the radicals generated in the iron-catalyzed reactions of peroxides (ROOH), we examined the cytocidal effects of these radicals against gram-positive and gram-negative bacteria in the presence or absence of various radical scavengers. Three organic peroxides, t-butyl hydroperoxide (t-BuOOH), methyl ethyl ketone peroxide (MEKOOH), and cumene hydroperoxide, were used. Each radical generated from these peroxides was identified and quantitated by electron spin resonance (ESR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The major cytotoxic radical species generated in the mixtures of various peroxides and heme iron, especially methemoglobin, metmyoglobin, or hemin, was the alkyl peroxyl radical (ROO.). Strong bactericidal action against gram-positive bacteria was observed in the peroxide-heme iron system, especially in the case of t-BuOOH and MEKOOH. Killing curves for gram-positive bacteria showed an initial lag period, which may indicate the multihit/multitarget kinetics of cell killing. When the diethylenetriamine pentaacetic acid (DTPA)-Fe2+ complex was used as a catalyst for decomposition of various peroxides, alkyl, alkoxyl, and alkyl peroxyl radicals were identified by spin-trapping analysis. However, study of the time course of alkyl peroxyl radical production in the DTPA-Fe2+ complex system revealed that radical species generated in this system were very short lived: a maximal level was achieved within 1 min and then declined sharply, and no bactericidal activity was observed after 10 min. In contrast, the alkyl peroxyl radical level generated by the organic peroxide-heme iron system remained high for 30 min or longer. The generation of alkyl peroxyl radicals quantified by ESR correlated quite well with the bactericidal effect of the system of peroxide plus iron. In addition, bactericidal activity was completely inhibited by the addition of the spin trap DMPO, as well as of other various radical scavengers (alpha-tocopherol and L-ascorbic acid), into the peroxide-heme iron system, but this effect was not observed with superoxide dismutase, beta-carotene, dimethyl sulfoxide, diphenylamine, or butylated hydroxyltoluene. In view of these results, it is assumed that alkyl peroxyl radicals are the potent molecular species that are cytotoxic against bacteria, whereas alkoxyl radicals (RO.) generated in this system do not affect bacterial viability.  相似文献   

16.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

17.
Water loss in a desiccation-sensitive moss resulted in destruction of chlorophyll, loss of carotenoids and increased lipid peroxidation, indicating the presence of damaging forms of activated oxygen. These effects were exaggerated when the plants were desiccated at high light intensities. During water-deprivation there was a build up of a free radical, detected in vivo, with a close correlation between molecular damage and radical accumulation. In contrast, in a desiccation-tolerant moss there was almost no indication of molecular (oxidative) damage. However a stable radical similar in type and concentration to that found in the desiccation-sensitive species accumulated, particularly under high irradiances. The stable radical appears to be one of the end-products of a process initiated by environmental stress, desiccation and high irradiance: its association with molecular damage depending on the degree to which the species is tolerant of desiccation. Identification of the radical in intact tissue from EPR and ENDOR studies, suggests that this is not a short-lived proxy-radical but instead is relatively stable and carbon-centred.  相似文献   

18.
We characterized the peroxidase mechanism of recombinant rat brain cytoglobin (Cygb) challenged by hydrogen peroxide, tert-butylhydroperoxide and by cumene hydroperoxide. The peroxidase mechanism of Cygb is similar to that of myoglobin. Cygb challenged by hydrogen peroxide is converted to a Fe4+ oxoferryl π cation, which is converted to Fe4+ oxoferryl and tyrosyl radical detected by direct continuous wave-electron paramagnetic resonance and by 3,5-dibromo-4-nitrosobenzene sulfonate spin trapping. When organic peroxides are used as substrates at initial reaction times, and given an excess of peroxide present, the EPR signals of the corresponding peroxyl radicals precede those of the direct tyrosyl radical. This result is consistent with the use of peroxide as a reducing agent for the recycling of Cygb high-valence species. Furthermore, we found that the Cygb oxidation by peroxides leads to the formation of amyloid fibrils. This result suggests that Cygb possibly participates in the development of degenerative diseases; our findings also support the possible biological role of Cygb related to peroxidase activity.  相似文献   

19.
Phenyl N-tert-butyl nitrone (PBN) is commonly employed in spin-trapping studies. We report here evidence that PBN in aqueous solutions is decomposed by two pathways leading to the generation of nitric oxide ('NO). The first pathway is by hydrolysis of PBN, which is strongly catalyzed by ferric iron. The second pathway is via PBN-hydroxyl radical adduct formation. NO was trapped in the presence of cysteine and ferrous iron to form a [(cys)2 Fe(NO)2] -3 complex, which was measured by use of electron paramagnetic resonance (EPR) spectroscopy. A concomitant metabolite, benzaldehyde, was detected from both reaction mixtures. We propose that PBN is hydrolyzed by Fe3+ or attacked by hydroxyl radical, leading eventually to a common transient species, tert-butyl hydronitroxide [t-BuN(O')H], which is further oxidized to a 'NO source, t-BuNO. Our data imply that PBN may decompose to 'NO when used in biological models with oxidative stress conditions.  相似文献   

20.
The reactions of hydrogen peroxide with human methemoglobin, sperm whale metmyoglobin, and horse heart metmyoglobin were studied by electron paramagnetic resonance (EPR) spectroscopy at 10 K and room temperature. The singlet EPR signal, one of the three signals seen in these systems at 10 K, is characterized by a poorly resolved, but still detectable, hyperfine structure that can be used to assign it to a tyrosyl radical. The singlet is detectable as a quintet at room temperature in methemoglobin with identical spectral features to those of the well characterized tyrosyl radical in photosystem II. Hyperfine splitting constants found for Tyr radicals were used to find the rotation angle of the phenoxyl group. Analysis of these angles in the crystal structures suggests that the radical resides on Tyr151 in sperm whale myoglobin, Tyr133 in soybean leghemoglobin, and either alphaTyr42, betaTyr35, or betaTyr130 in hemoglobin. In the sperm whale metmyoglobin Tyr103Phe mutant, there is no detectable tyrosyl radical present. Yet the rotation angle of Tyr103 (134 degrees) is too large to account for the observed EPR spectrum in the wild type. Tyr103 is the closest to the heme. We suggest that Tyr103 is the initial site of the radical, which then rapidly migrates to Tyr151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号