首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.  相似文献   

2.
3.
4.
5.
6.
7.
A rodent 4.5S RNA molecule with extensive homology to the Alu family of interspersed repetitive DNA sequences has been found physically associated with polyadenylated nuclear and cytoplasmic RNAs (W. Jelinek and L. Leinwand, Cell 15:205-214, 1978; S. Haynes et al., Mol. Cell. Biol. 1:573-583, 1981). In this report, we describe a 4.5S RNA molecule in rat cells whose RNase fingerprints are identical to those of the equivalent mouse molecule. We show that the rat 4.5S RNA is part of a small family of RNA molecules, all sharing sequence homology to the Alu family of DNA sequences. These RNAs are synthesized by RNA polymerase III and are developmentally regulated and short-lived in the cytoplasm. Of this family of small RNAs, only the 4.5S RNA is found associated with polyadenylated RNA.  相似文献   

8.
9.
10.
11.
Yoto Y  Qiu J  Pintel DJ 《Journal of virology》2006,80(3):1604-1609
Polyadenylation of B19 pre-mRNAs at the major internal site, (pA)p1, is programmed by the nonconsensus core cleavage and polyadenylation specificity factor-binding hexanucleotide AUUAAA. Efficient use of this element requires both downstream and upstream cis-acting elements and is further influenced by an adjacent AAUAAC motif. The primary hexanucleotide element must be nonconsensus to allow efficient readthrough of P6-generated pre-mRNAs into the capsid-coding region. An additional cleavage and polyadenylation site, (pA)p2, 296 nucleotides downstream of (pA)p1 was shown to be used following both B19 infection and transfection of a genomic clone. RNAs polyadenylated at (pA)p2 comprise approximately 10% of B19 RNAs that are polyadenylated internally.  相似文献   

12.
13.
14.
15.
Most eukaryotic mRNAs depend upon precise removal of introns by the spliceosome, a complex of RNAs and proteins. Splicing of pre-mRNA is known to take place in Dictyostelium discoideum, and we previously isolated the U2 spliceosomal RNA experimentally. In this study, we identified the remaining major spliceosomal RNAs in Dictyostelium by a bioinformatical approach. Expression was verified from 17 small nuclear RNA (snRNA) genes. All these genes are preceded by a putative noncoding RNA gene promoter. Immunoprecipitation showed that snRNAs U1, U2, U4, and U5, but not U6, carry the conserved trimethylated 5' cap structure. A number of divergent U2 species are expressed in Dictyostelium. These RNAs carry the U2 RNA hallmark sequence and structure motifs but have an additional predicted stem-loop structure at the 5' end. Surprisingly, and in contrast to the other spliceosomal RNAs in this study, the new U2 variants were enriched in the cytoplasm and were developmentally regulated. Furthermore, all of the snRNAs could also be detected as polyadenylated species, and polyadenylated U1 RNA was demonstrated to be located in the cytoplasm.  相似文献   

16.
Complementary DNAs (cDNAs) were synthesized from polyadenylated RNAs of myoblasts and myotubes and used to analyze changes in the sequence complexity and frequency distribution of messenger RNAs during myogenesis in vitro. cDNA . polyadenylated-RNA hybridization kinetics show the presence of messenger RNA sequences specific for myotubes in fully differentiated muscle cultures. These sequences are accumulated just prior to fusion, as was shown by hybridizations of myotube cDNA and total cytoplasmic RNAs from cells at different stages of differentiation. The myotube cDNA can be enriched 10-fold in myotube-specific RNA species by a hybridization with cytoplasmic RNAs from myoblasts and subsequent removal of these hybridized sequences by hydroxyapatite.  相似文献   

17.
The complexity and abundance of Epstein-Barr (EBV)-specific RNA in cell cultures restringently, abortively, and productively infected with EBV has been analyed by hybridization of the infected cell RNA with purified viral DNA. The data indicate the following. (i) Cultures containing productively infected cells contain viral RNA encoded by at least 45% of EBV DNA, and almost all of the species of viral RNA are present in the polyadenylated and polyribosomal RNA fractions. (ii) Restringently infected Namalwa and Raji cultures, which contain only intranuclear antigen, EBNA, and enhanced capacity for growth in vitro, contain EBV RNA encoded by at least 16 and 30% of the EBV DNA, respectively. The polyadenylated and polyribosomal RNA fractions of Raji and Namalwa cells are enriched for a class of EBV RNA encoded by approximately 5% of EBV DNA. The same EBV DNA sequences encode the polyadenylated and polyribosomal RNA of both Raji and Namalwa cells. (iii) After superinfection of Raji cultures with EBV (HR-1), the abortively infected cells contain RNA encoded by at least 41% of EBV DNA. The polyadenylated RNA of superinfected Raji cells is enriched for a class of EBV RNA encoded by approximately 20% of EBV HR-1 DNA. Summation hybridization experiments suggest that the polyadenylated RNA in superinfected Raji cells is encoded by the same DNA sequences as encode RNA present in Raji cells before superinfection, most of which is not polyadenylated. That the same EBV RNA sequences are present in the polyadenylated and polyribosomal fractions of two independently derived, restringently infected cell lines suggests that these RNAs may specify functions related to maintenance of the transformed state. The complexity of this class of RNA is adequate to specify a sequence of a least 5,000 amino acids. That only some RNA species are polyadenylated in restringent and abortive infection suggests that polyadenylation or whatever determines polyadenylation may play a role in the restricted expression of the EVB genome.  相似文献   

18.
The genomic RNA of tobacco mosaic virus (TMV), like that of other positive-strand RNA viruses, acts as a template for both translation and replication. The highly structured 3' untranslated region (UTR) of TMV RNAs plays an important role in both processes; it is not polyadenylated but ends with a tRNA-like structure (TLS) preceded by a conserved upstream pseudoknot domain (UPD). The TLS of tobamoviral RNAs can be specifically aminoacylated and, in this state, can interact with eukaryotic elongation factor 1A (eEF1A)/GTP with high affinity. Using a UV cross-linking assay, we detected another specific binding site for eEF1A/GTP, within the UPDs of TMV and crucifer-infecting tobamovirus (crTMV), that does not require aminoacylation. A mutational analysis revealed that UPD pseudoknot conformation and some conserved primary sequence elements are required for this interaction. Its possible role in the regulation of tobamovirus gene expression and replication is discussed.  相似文献   

19.
Polyadenylated RNA complementary to repetitive DNA in mouse L-cells.   总被引:2,自引:0,他引:2  
G U Ryffel  B J McCarthy 《Biochemistry》1975,14(7):1385-1389
Complementary DNA, synthesized with L-cell polyadenylated RNA as template, renatured with total L-cell DNA to about 70%. About 30% complementary to unique sequence DNA and another 10 and 30% corresponded to sequences about 20- and 500-fold repetitive. Complementary DNA was fractionated after partial hybridization with total polyadenylated RNA to obtain preparations enriched or impoverished in complements of the most frequent polyadenylated RNA. Renaturation of these complementary DNA fractions with L-cell DNA revealed that most frequent RNAs are transcribed from repetitive DNA sequences, Complementary DNA, density labeled with bromodeoxyuridine, was fractionated by renaturation with L-cell DNA to yield fractions enriched in repetitive and unique sequence DNA. The denisty labeled complementary DNA was purified by equilibrium centrifiguation in an alkaline Cs2SO4 gradient. The complementary DNA representing mainly repetitive DNA sequences hybridized preferentially to frequent polyadenylated RNA.  相似文献   

20.
S Tracy  D E Kohne 《Biochemistry》1980,19(16):3792-3799
A method is described for using very high specific activity [3H]poly(deoxythymidylate) [[3H]poly(dT)] to detect, size, and quantiate subnanogram amounts of nonradioactive polyadenylated RNA. Short (approximately 100 nucleotides long) [3H]poly(dT) is hybridized to the poly(adenylate) [poly(A)] tracts in polyadenylated RNAs. The RNA may then be sized and quantitated by sucrose gradient analysis. The addition of the small [3H]poly(dT) molecules does not significantly alter the s values of RNAs. The amount of [3H]poly(dT) hybridized to polyadenylated RNA increases linearly with the amount of RNA. A room temperature hydroxylapatite (HA) method has also been developed to detect and quantitate poly(A)-containing RNA after hybridization to radioactive poly(dT). S-1 nuclease (S-1) analysis can also be used to measure the poly(A) content of polyadenylated RNA to less than nanogram RNA amounts. For both the S-1 and HA approaches, the amount of [3H]poly(dT) hybridized increases with the amount of RNA and the methods can detect to as little as 10(-12) g of polyadenylated RNA with [3H]poly(dT). Greater sensitivity is possible with higher specific activity poly(dT). The approaches presented here significantly extend the uses of radioactive homopolymers to detect, quantitate, and characterize RNAs containing complementary homopolymer tracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号