首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of altered recA polypeptides and interaction with ATP and DNA   总被引:10,自引:0,他引:10  
In this paper we describe the partial proteolytic digestion of recA proteins from Escherichia coli and Proteus mirabilis and the production and isolation of truncated recA polypeptides. A proteolytic fragment of the P. mirabilis recA protein bound single-strand DNA and ATP normally but has altered duplex DNA binding properties. This protein was shown to initiate but not complete DNA strand transfer from a DNA duplex to a complementary single strand. The product of the E. coli recA1 allele bound but could not hydrolyze ATP and the protein bound single-strand but not double-strand DNA. This protein did not appear to initiate the transfer of a strand from a linear duplex to a single-strand circle and inhibited the wild-type recA protein from performing strand transfer. We report that recA protein binds linear duplex DNA in a manner that enhances the rate of ligation by T4 DNA ligase. When heterologous single-strand DNA was added in addition to the duplex DNA large stable aggregates of protein and DNA were formed that could easily be sedimented from solution.  相似文献   

2.
In the present paper laser desorption mass spectrometry (LDMS) was applied to dephosphorylated free lipid A preparations obtained from lipopolysaccharides of Re mutants of Salmonella minnesota, Escherichia coli and Proteus mirabilis. The purpose of this study was to elucidate the location of (R)-3-hydroxytetradecanoic acid and 3-O-acylated (R)-3-hydroxytetradecanoic acid residues which are bound to amino and hydroxyl groups of the glucosamine disaccharide backbone of lipid A. Based on the previous finding from biochemical analyses that the amino group of the nonreducing glucosamine residue (GlcN II) of the backbone carries, in S. minnesota and E. coli, 3-dodecanoyloxytetradecanoic acid and, in P. mirabilis, 3-tetradecanoyloxytetradecanoic acid, a self-consistent interpretation of the LDMS was possible. It was found that: (a) in all three lipids A GlcN II is, besides the amide-linked 3-acyloxyacyl residue, substituted by ester-linked 3-tetradecanoyloxytetradecanoic acid; (b) the reducing glucosamine (GlcN I) is substituted by ester-linked 3-hydroxytetradecanoic acid; (c) the amino group of GlcN I carries a 3-hydroxytetradecanoic acid which is non-acylated in E. coli and which is partially acylated by hexadecanoic acid in S. minnesota and P. mirabilis. In lipids A which were obtained from the P. mirabilis Re mutant grown at low temperature (12 degrees C) LDMS analysis revealed that specifically the one fatty acid bound to the 3-hydroxyl group of amide-linked 3-hydroxytetra-decanoic acid at GlcN II is positionally replaced by delta 9-hexadecenoic acid (palmitoleic acid). It appears, therefore, that enterobacterial lipids A resemble each other in that the 3-hydroxyl groups of the two 3-hydroxytetradecanoic acid residues linked to GlcN II are fully acylated, while those of the two 3-hydroxytetradecanoic acid groups attached to GlcN I are free or only partially substituted.  相似文献   

3.
The existence of a free form of a specific lipoprotein of molecular weight 7,200 was examined in the envelopes of several gram-negative bacteria. When the envelope proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, distinct peaks were observed in Salmonella typhimurium, Serratia marcescens, and Pseudomonas aeruginosa at the same position as the free form of the lipoprotein of Escherichia coli. However, the peak was not observed in Proteus mirabilis. The protein at the peak in S. typhimurium was shown to contain little or no histidine as expected from the amino acid composition of the lipoprotein. Furthermore, antiserum against the highly purified lipoprotein from E. coli was shown to react with the proteins from S. typhimurium and S. marcescens and to form the specific immunoprecipitates. In contrast, the protein from P. aeruginosa did not react with the antiserum at all. Thus, it is concluded that S. typhimurium and S. marcescens have the free form of the lipoprotein in their envelopes as does E. coli. P. aeruginosa contains a protein of the same size as the lipoprotein, but it is not certain whether the protein is the same structural protein as the lipoprotein from E. coli. P. mirabilis may not have any free form of the lipoprotein, may have it in a very small amount, or may have a lipoprotein of different molecular weight serving the same function.  相似文献   

4.
Resistance markers to individual antibiotics are transmitted in E. coli with the same frequency in the shape of a uniform linkage group, and in Proteus mirabilis--with a different one. Possibly in Proteus mirabilis plasmide R6 dissociated, this being expressed in a different incidence of transconjugates, characterized by a different set of antibiotic resistance genes. Tetracyclin resistance gene can be transmitted in P. mirabilis without being bound with other resistance determinants and with the functioning Tra-operon. The expression of individual antibiotic resistance genes of plasmide R6 in P. mirabilis differed, i.e. tetracycline resistance was inducible, and to kanamycin and chloramphenicol--constitutional. The level of expression of the gene controlling the tetracycline resistance was in noninduced condition in P. mirabilis, lower than in E. coli, P. mirabilis containing no R-factor possessed an inducible resistance mechanism to tetracycline, as in case of P. mirabilis strains containing R-factors.  相似文献   

5.
We describe a novel membrane surface display system that allows the anchoring of foreign proteins in the cytoplasmic membrane (CM) of stable, cell wall-less L-form cells of Escherichia coli and Proteus mirabilis. The reporter protein, staphylokinase (Sak), was fused to transmembrane domains of integral membrane proteins from E. coli (lactose permease LacY, preprotein translocase SecY) and P. mirabilis (curved cell morphology protein CcmA). Both L-form strains overexpressed fusion proteins in amounts of 1 to 100 microg ml(-1), with higher expression for those with homologous anchor motifs. Various experimental approaches, e.g., cell fractionation, Percoll gradient purification, and solubilization of the CM, demonstrated that the fusion proteins are tightly bound to the CM and do not form aggregates. Trypsin digestion, as well as electron microscopy of immunogold-labeled replicas, confirmed that the protein was localized on the outside surface. The displayed Sak showed functional activity, indicating correct folding. This membrane surface display system features endotoxin-poor organisms and can provide a novel platform for numerous applications.  相似文献   

6.
In Escherichia coli, constituents of the main recombination pathway are provided by the genes recA (RecA protein) and recBCD (RecBCD enzyme). Recombination in conjugation experiments and repair of UV damage of E. coli mutants deleted for recA, for recBCD or for recA plus recBCD were restored, although to different degrees, by the cloned recA and recBCD genes from Serratia marcescens or Proteus mirabilis. When both recombination enzymes were from the same species, repair and recombination efficiencies had the order E. coli greater than S. marcescens greater than P. mirabilis. However, the P. mirabilis recA plus recBCD genes resulted in higher levels of repair and recombination than those obtained with one component from P. mirabilis (recA or recBCD) and the other from E. coli or S. marcescens. The data provide evidence for the similarity of RecABCD pathways of recombination among enteric bacteria and suggest an in vivo advantage of an intraspecies combination of P. mirabilis RecA protein and RecBCD enzyme over interspecies combinations. This could point to a cooperation between these basic recombination enzymes. The molecular processes which could be involved are discussed.  相似文献   

7.
Novel shuttle vectors of small size and increased copy number capable of replication in Escherichia coli, L-forms of Proteus mirabilis, and streptococci were constructed from a streptococcal erythromycin-resistant plasmid and an Escherichia coli phasmid. The streptokinase gene, skc, was inserted into one of them, and skc expression was studied in Streptococcus sanguis, Streptococcus lactis, and in an L-form strain (LVI) of Proteus mirabilis. The new streptokinase shuttle plasmid, pMLS10 (7.3 kb), specified higher Skc yields in all hosts when compared to pSM752 constructed previously. In particular Proteus mirabilis LVI(pMLS10) proved to be the most productive host, exhibiting complete secretion of the active protein at yields as high as 24000 unit per ml.  相似文献   

8.
Washed suspensions of Entodinium bursa were incubated anaerobically with Entodinium caudatum, ten species of bacteria and a yeast. The rate of uptake and digestion of these micro-organisms was investigated. Protozoa grown in vivo did not engulf Proteus mirabilis or Klebsiella aerogenes but rapidly took up Bacillus megaterium. Selenomonas ruminantium, Torulopsis glabrata and Streptococcus bovis, although only the last was digested with release of soluble material into the medium. Protozoa grown in vitro engulfed each of the bacteria tested, taking up Megasphaera elsdenii and Proteus mirabilis most rapidly. Individual bacterial species and mixed rumen bacteria were engulfed more rapidly (up to 20 times) by protozoa grown in vivo than those grown in vitro, although the latter digested over 80% of the B. megaterium, Escherichia coli and P. mirabilis taken up. Labelled Ent. caudatum was extensively digested after engulfment by Ent. bursa. Some of the digestion products were released into the medium but individual amino acids were transferred as such from Ent. caudatum protein to Ent. bursa protein. Engulfed bacteria and polysaccharide granules were transferred intact from one protozoon to the other. Free amino acids were also taken up intact from the medium into protozoal protein but there was little biosynthesis of amino acids from glucose. When available for engulfment Ent. caudatum was quantitatively a much more valuable source of amino acids for protein synthesis by Ent. bursa than free amino acids or bacteria.  相似文献   

9.
Proteus mirabilis urease, a nickel metalloenzyme, is essential for the virulence of this species in the urinary tract. Escherichia coli containing cloned structural genes ureA, ureB, and ureC and accessory genes ureD, ureE, ureF, and ureG displays urease activity when cultured in M9 minimal medium. To study the involvement of one of these accessory genes in the synthesis of active urease, deletion mutations were constructed. Cultures of a ureE deletion mutant did not produce an active urease in minimal medium. Urease activity, however, was partially restored by the addition of 5 microM NiCl2 to the medium. The predicted amino acid sequence of UreE, which concludes with seven histidine residues among the last eight C-terminal residues (His-His-His-His-Asp-His-His-His), suggested that UreE may act as a Ni2+ chelator for the urease operon. To exploit this potential metal-binding motif, we attempted to purify UreE from cytoplasmic extracts of E. coli containing cloned urease genes. Soluble protein was loaded onto a nickel-nitrilotriacetic acid column, a metal chelate resin with high affinity for polyhistidine tails, and bound protein was eluted with a 0 to 0.5 M imidazole gradient. A single polypeptide of 20-kDa apparent molecular size, as shown by sodium dodecyl sulfate-10 to 20% polyacrylamide gel electrophoresis, was eluted between 0.25 and 0.4 M imidazole. The N-terminal 10 amino acids of the eluted polypeptide exactly matched the deduced amino acid sequence of P. mirabilis UreE. The molecular size of the native protein was estimated on a Superdex 75 column to be 36 kDa, suggesting that the protein is a dimer. These data suggest that UreE is a Ni(2)+-binding protein that is necessary for synthesis of a catalytically active urease at low Ni(2+) concentrations.  相似文献   

10.
C oleman , G.S. & H all , F.J. 1984. The uptake and utilization of Entodinium caudatum , bacteria, free amino acids and glucose by the rumen ciliate Entodinium bursa. Journal of Applied Bacteriology 56 , 283–294.
Washed suspensions of Entodinium bursa were incubated anaerobically with Entodinium caudatum , ten species of bacteria and a yeast. The rate of uptake and digestion of these micro-organisms was investigated. Protozoa grown in vivo did not engulf Proteus mirabilis or Klebsiella aerogenes but rapidly took up Bacillus mega-terium, Selenomonas ruminantium, Torulopsis glabrata and Streptococcus bouis , although only the last was digested with release of soluble material into the medium. Protozoa grown in vitro engulfed each of the bacteria tested, taking up Megasphaera elsdenii and i>Proteus mirabilis most rapidly. Individual bacterial species and mixed rumen bacteria were engulfed more rapidly (up to 20 times) by protozoa grown in vivo than those grown in vitro , although the latter digested over 80% of the B. megaterium, Escherichia coli and P. mirabilis taken up. Labelled Ent. caudatum was extensively digested after engulfment by Ent. bursa . Some of the digestion products were released into the medium but individual amino acids were transferred as such from Ent. caudatum protein to Ent. bursa protein. Engulfed bacteria and polysaccharide granules were transferred intact from one protozoon to the other. Free amino acids were also taken up intact from the medium into protozoal protein but there was little biosynthesis of amino acids from glucose. When available for engulfment Ent. caudatum was quantitatively a much more valuable source of amino acids for protein synthesis by Ent. bursa than free amino acids or bacteria.  相似文献   

11.
XerC and XerD are two site-specific recombinases, which act on different sites to maintain replicons in a monomeric state. This system, which was first discovered and studied in Escherichia coli, is present in several species including Proteus mirabilis, where the XerD recombinase was previously characterized by our laboratory. In this paper, we report the presence of the xerC gene in P. mirabilis. Using in vitro reactions, we show that the two P. mirabilis recombinases display binding and cleavage activity on the E. coli dif site and the ColE1 cer site, together or in collaboration with E. coli recombinases. In vivo, P. mirabilis XerC and XerD are able to resolve and monomerize a plasmid containing two cer sites, increasing its stability. However, P. mirabilis XerC, in combination with E. coli XerD, is unable to perform these functions.  相似文献   

12.
13.
Gene copy number effects in the mer operon of plasmid NR1.   总被引:4,自引:2,他引:2       下载免费PDF全文
The level of resistance to Hg2+ determined by the inducible mer operon of plasmid NR1 was essentially the same for three gene copy number variants in Escherichia coli, less in Proteus mirabilis, and intermediate in P. mirabilis "transitioned" to a high r-determinant gene copy number. Cell-free volatilization rates of radioactive mercury indicated increasing levels of intracellular mercuric reductase enzyme from low- to high-gene copy number forms in P. mirabilis and from low- to high-copy number forms in E. coli, but the additional enzyme in E. coli was effectively cryptic.  相似文献   

14.
The Ipp gene from Proteus mirabilis was cloned onto pBR322 and expressed in Escherichia coli. The P. mirabilis lpp gene is unique in that it has two tandem promoters transcribing two mRNAs that differ in length by approximately 70 nucleotides at their 5'-ends. The two mRNAs thus encode the identical lipoprotein. The P. mirabilis prolipoprotein has a 19-amino acid signal peptide and a 59-amino acid lipoprotein sequence. In spite of the substantial differences in the amino acid sequence from the E. coli prolipoprotein, the P. mirabilis prolipoprotein is normally modified and processed in E. coli, and the resultant lipoprotein is assembled in the E. coli outer membrane as is the E. coli lipoprotein.  相似文献   

15.
The role of intestinal flora in the production of anorexigenic substance was investigated. Proteus mirabilis (P. mirabilis) and Escherichia coli (E. coli) were found to produce an anorexigenic substance, while Enterococcus faecalis (E. faecalis, type 1 and 2) and Staphylococcus intermedius (S. intermedius) did not. The anorexigenic substance was purified and was detected as, a single though broad band by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity of the final form of the purified substance was 120 units/mg carbohydrate. The substance contained no protein residue and appeared to be a lipopolysaccharide. The evidence that intestinal flora produces an anorexigenic substance leads to an interesting assumption that the intestinal flora may be responsible for regulating food intake.  相似文献   

16.
Escherichia coli rRNA genes have been introduced into Proteus mirabilis on an F-prime factor (F'14). A portion of the ribosomes in the resulting merodiploid consist of E. coli rRNA and P. mirabilis ribosomal proteins. These ribosomes are structurally similar to normal P. mirabilis or E. coli ribosomes and exhibit many or all of the functional properties of normal ribosomes. The accumulation of E. coli rRNA in the merodiploid is regulated in a way similar to the the regulation of P. mirabilis rRNA.  相似文献   

17.
The physical maps of cloned recBCD gene regions of Serratia marcescens and Proteus mirabilis were correlated to genes located in this region. The genes thyA, recC, recB, recD and argA were organized as in Escherichia coli. The 3 rec genes code for the 3 different subunits of the RecBCD enzyme and produced enzymes promoting recombination and repair of UV damage in E coli. The recBCD-dependent stimulation of recombination at specific nucleotide sequences called Chi (Chi-activation) was determined in lambda red-gam-crosses. Chi-activation by the different RecBCD enzymes decreased in the order E coli greater than S marcescens greater than P mirabilis. In E coli cloned subunits genes from S marcescens and P mirabilis led to the formation of functional hybrid enzymes consisting of subunits from 2 or even 3 species. The origin of the RecC subunit present in the hybrid enzymes affected the degree of Chi-activation. Further, changes in Chi-activation occurred when the RecD subunit in the enzyme from E coli was replaced by RecD proteins from S marcescens or P mirabilis. This suggested that the RecD subunit determines not only whether or not Chi-activation is possible but also to which extent it occurs. Finally we have reconstituted recombination pathways of S marcescens and P mirabilis by combining the cloned recA and recBCD genes from these species in E coli deleted for recA and recBCD. Both pathways can efficiently promote recombination and repair. Studies are summarized which showed that levels of repair and recombination promoted by the recA-recBCD genes are mostly higher when the recA and recBCD genes came from the same species than from 2 different species (hybrid RecBCD recombination pathway). The data are interpreted to provide evidence that in vivo the RecA protein co-operates with the RecBCD enzyme in recombination and repair of UV damage.  相似文献   

18.
Merodiploid derivatives bearing an F-linked lac operon (i(+), o(+), z(+), y(+), a(+)) from Escherichia coli were prepared from a Proteus mirabilis strain unable to utilize lactose and from a lac deletion strain of E. coli. A suitable growth medium was found in which the episomal element in the P. mirabilis derivative was sufficiently stable to allow induction of the episome-borne lac operon and thus to permit a comparison of the activities and properties of E. coli lac products in the intracellular environments of P. mirabilis and E. coli. In both derivatives the episomal lac operon was shown to be repressed in the absence of inducer. Kinetics of induction with gratuitous inducer (isopropyl-1-thio-beta-d-galactoside) were similar for both beta-galactosidase activity (beta-d-galactoside galactohydrolase, EC 3.4.1.23) and beta-galactoside transport activity in both derivatives, although the ratio of galactoside transport to beta-galactosidase activity was approximately 1.6-fold higher in the E. coli derivative. Comparison of beta-galactosidase and M-protein (lac y gene product)-specific activities indicated coordinate expression of the induced lac operon in both derivatives. Quantitatively, the maximal beta-galactosidase specific activity was two or three times higher for the E. coli derivative. A significant sodium azide inhibition (65% inhibition by 10 mM sodium azide) of lactose permease-mediated transport of o-nitrophenyl-beta-galactoside from an outside region of high concentration to an inside region of very low concentration ("downhill transport") was observed for the P. mirabilis derivative. Identical conditions for the E. coli derivative yielded only about 15% inhibition. Active transport of thiomethyl-beta-galactoside was similar for both derivatives, the major difference being that active transport was more sensitive to azide poisoning in the P. mirabilis derivative. Preliminary examination of the thiomethyl-beta-galactoside derivatives following active transport did not demonstrate the accumulation of a phosphorylated product in either strain but did reveal an unidentified derivative present in the P. mirabilis merodiploid extract which was not detectable in the E. coli merodiploid.  相似文献   

19.
The aim of this study was twofold: first, to characterize the free extracellular polymeric substances (EPS) and bound EPS produced by Escherichia coli during different growth phases in different media, and then to investigate the role of the free EPS in promoting aggregation. EPS was extracted from a population of E. coli MG1655 cells grown in different media composition (Luria-Bertani (LB) and Luria-Bertani with the addition of 0.5 w/v% glucose at the beginning of the growth phase (LBG)) and at different growth phases (6 and 24 h). The extracted EPS was characterized using Fourier transform infrared spectroscopy and further identified using one-dimensional gel-based electrophoresis and tandem mass spectrometry. E. coli MG1655 was found to produce significantly lower amounts of bound EPS compared to free EPS under all conditions. The protein content of free EPS increased as the cells progressed from the exponential to stationary phase when grown in LB or LBG, while the carbohydrate content only increased across the growth phases for cells grown in LBG. FTIR revealed a variation in the different functional groups such as amines, carboxyl, and phosphoryl groups for free EPS extracted at the different growth conditions. Over 500 proteins were identified in the free EPS, with 40 proteins common in all growth conditions. Proteins with functionality related to amino acid and carbohydrate metabolism, as well as cell wall and membrane biogenesis were among the highest proteins identified in the free EPS extracted from E. coli MG1655 under all growth and media conditions. The role of bound and free EPS was investigated using a standardized aggregation assay. Bound EPS did not contribute to aggregation of E. coli MG1655. The readdition of free EPS to E. coli MG1655 resulted in aggregation of the cells in all growth conditions. Free EPS extracted from the 24 h E. coli MG1655 cultures grown in LB had the greatest effect on aggregation of cells grow in LBG, with a 30% increase in aggregation observed.  相似文献   

20.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号