首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The Ngrol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ngrol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ngrol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ngrol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ngrol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ngrol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ngrol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.Seishiro Aoki is the recipient of the Botanical Society Award for Young Scientist, 2002.  相似文献   

2.
Mature plants were regenerated via protoplasts fromAgrobacterium rhizogenes-transformed root cultures ofHyoscyamus muticus L., and chemical analyses were performed on 34 individual plants. The regenerated plants showed strong phenotypic differences from clone to clone as well as from the control plants. Polymerase chain reaction studies revealed that the plants exhibiting the strongest phenotypic alterations contained therol (A, B and C) genes, whereas the plants with fewer alterations had lost them. The plants produced hyoscyamine, scopolamine and a range of different calystegins, and considerable somaclonal variation was observed. Alkaloid production in the plants transgenic for therol genes was clearly reduced. The pattern of calystegins was similar within all the regenerated plants lackingrol genes. Among the plants withrol genes, the calystegin B1 was not detectable. It seems clear that the presence ofrol genes is detrimental to the alkaloid accumulation in the transgenic plants in contrast to hairy root cultures.Abbreviation PCR Polymerase chain reaction  相似文献   

3.
Use of ri-mediated transformation for production of transgenic plants   总被引:12,自引:0,他引:12  
Summary Agrobacterium rhizogenes-mediated transformation has been used to obtain transgenic plants in 89 different taxa, representing 79 species from 55 genera and 27 families. A diverse range of dicotyledonous plant families is represented, including one Gymnosperm family. In addition to the Ri plasmid, over half these plants have been transformed with foreign genes, including agronomically useful traits. Plants regenerated from hairy roots often show altered plant morphology such as dwarfing, increased rooting, altered flowering, wrinkled leaves and/or increased branching due to rol gene expression. These altered phenotypic features can have potential applications for plant improvement especially in the horticultural industry where such morphological alterations may be desirable. Use of A. rhizogenes and rol gene transformation has tremendous potential for genetic manipulation of plants and has been of particular benefit for improvement of ornamental and woody plants.  相似文献   

4.
Agrobacterium tumefaciens-mediated transformation of recalcitrant crops   总被引:3,自引:0,他引:3  
The most widely used technique for the introduction of new genetic information into plant cells is based on the natural gene transfer capacity ofAgrobacterium tumefaciens. Currently, this technique is routinely applicable in just a few model species, like tobacco and petunia. Thus far, the numerous efforts to apply the technique to crop species have had limited success. In this review, an attempt is made to survey all the research experience onAgrobacterium tumefaciens-mediated transformation of recalcitrant crops and to highlight the problems generally encountered. The main difficulty appears to be directing the gene transfer towards those plant cells that are amenable to regeneration. The various ways to reduce stress during the transformation and regeneration process are often beneficial. The influence of the developmental stage of the plant material and the host range of theAgrobacterium strain depends largely on the plant species used, which hampers the formulation of common procedures. However, some general guidelines for the development of a transformation protocol are discussed.  相似文献   

5.
Due to their extensive growth potential, transgenic root systems arising from inoculation withAgrobacterium rhizogenes became popular in the last decade as model systems in domains as diverse as production of secondary metabolites, interactions with pathogens and symbionts, examination of gene importance in control of root development or in regulation of gene expression in roots. Wild-type bacterial strains have also been considered as useful tools to stimulate rooting on recalcitrant cuttings or microcuttings as they cause abundant root initiation at the site of inoculation.Root initiation and the in vitro growth characteristics of transformed roots result from the transfer of genes located on the root-inducing plasmid (Ri) to plant cells and their expression therein. Two sets of pRi genes are involved in the root induction process: therol (rootloci) genes located in the TL region and theaux genes of the TR region. Some of these genes being able to interact, the system appears also as a new tool to study the role of auxin in the process of root initiation. The distinctive phenotype of the transformed roots which are capable of hormone autonomous growth seems to be controlled mainly by therol genes. Theserol genes, i.e. the geneticloci rol A, rol B, rol C androl D correspond to open reading frames ORFs 10, 11, 12 and 15. In vitro experiments determined the functions of the Rol B and Rol C proteins but the functions of Rol A and Rol D are still unknown. Altered metabolism of developmental regulators or modified sensitivity to auxin have been suspected to mediate root induction and morphological abnormalities of transformed roots and plants.The target cells for transformation and the cells which are competent for root initiation will be characterized as well as the subsequent development of transgenic roots provided with various constructs from the whole T-DNA to singlerol genes. Results dealing with auxin contents in relation with root growth kinetics, phenotype and structure, will also be presented and discussed with the potential use of therol genes to control root biomass. F J de Bruijn Section editor  相似文献   

6.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize.  相似文献   

7.
Agrobacterium tumefaciens-mediated transformation has been widely used in molecular characterization of genes inArabidopsis thaliana. A number of procedures have been developed for transformation ofArabidopsis explants usingAgrobacterium. This paper describes an improved protocol for transformation ofArabidopsis thaliana root explants. Most significantly, using this protocol one can achieve efficient root regeneration of transformation in Landsbergerecta, an ecotype which is widely used in genetic and molecular analyses and which has been difficult to transform in the past. Additional modifications allow easy production of roots for transformation and regeneration of large numbers of transformation t shoots.  相似文献   

8.
Doubled haploid (DH) genotypes from a genetic mapping population of Brassica oleracea were screened for ease of transformation. Candidate genotypes were selected based on prior knowledge of three phenotypic markers: susceptibility to Agrobacterium tumefaciens, shoot regeneration potential and mode of shoot regeneration. Mode of regeneration was found to be the most significant of the three factors. Transgenic plants were successfully obtained from genotypes that regenerated multiple shoots via a distinct swelling or callus phase. The absence of tissue culture blackening (associated with genotypes that formed callus) was found to be critical for transformation success. Transgenic shoots were obtained from genotypes that regenerated via an indirect callus mode, even when susceptibility to Agrobacterium was low. The most efficient genotype (DH AG1012) produced transgenic shoots at an average rate of 15% (percentage of inoculated explants giving rise to transgenic plants). The speed and efficiency of regeneration enabled the isolation of transgenic shoots 5–6 weeks after inoculation with A. tumefaciens. This line was also self-compatible, enabling the production of seed without the need for hand-pollination. A genetically uniform DH genotype, with an associated genetic map, make DH AG1012 highly desirable as a potential model B. oleracea genotype for studying gene function. The possibility of applying the same phenotypic tissue culture markers to other Brassica species is discussed.  相似文献   

9.
An Agrobacterium rhizogenes-mediated transformation system for Aesculus hippocastanum L. has been developed. Wounded androgenic embryos of A. hippocastanum were inoculated with bacteria containing the pRiA4 plasmid, with the uid A sequence as a reporter gene. The hairy roots emerging from the wounded sites of androgenic embryos were isolated and maintained in Murashige and Skoog's (MS) liquid hormone-free medium. Five hairy root lines have been maintained in vitro for 4 years with unchanged growth rate and might be a suitable source for secondary metabolite production. The transformation events have been confirmed by a polymerase chain reaction specific to the rol A, B, C and D genes. The absence of residual contaminating bacteria has been shown by a polymerase chain reaction specific to the vir D1 sequence.  相似文献   

10.
Requirement for antibiotic-resistance selection markers and difficulty in identifying transgenes with the highest expression levels remain the major obstacles for rapid production of recombinant proteins in plants. An alternative approach to producing transgenic plants free of antibiotic-resistance markers is the phenotypic-based selection with root-proliferation genes (rol genes) of Agrobacterium rhizogenes. By using Agrobacterium tumefaciens harboring the pRYG transformation vector with a cluster of rol genes linked to a heterologous gene of interest, we have developed a rapid transformation tool using hairy root formation as a selection marker. The expression of -glucuronidase in newly induced transgenic tobacco roots could be detected as early as 12 days after inoculation. Higher levels of transgene expression in the roots correlated positively with the rates of root elongation on hormone-free medium and thus could be used for positive selection. When tobacco plants were transformed with pRYG harboring the expression cassette for secreted alkaline phosphatase (SEAP), the release of SEAP from roots of the fully regenerated transgenic plants could be quantified at rates as high as 28 g/g root dry weight per day.Abbreviations GUS: -Glucuronidase - SEAP: Secreted alkaline phosphatase - rolABC: Cluster of rolA, rolB, and rolC genesCommunicated by A. Altman  相似文献   

11.
AsAgrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast,Saccharomyces cerevisiae, a variety of fungi were subjected to theA. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. TheA. tumefaciens-mediated transformation of chestnut blight fungus,Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of theAspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1×106 conidia ofC. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.  相似文献   

12.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Bacterial plant oncogenes: Therol genes' saga   总被引:1,自引:0,他引:1  
Therol genes are part of the T-DNA which is transferred byAgrobacterium rhizogenes in plant cells, causing neoplastic growth and differentiation. Each of these bacterial oncogenes deeply influences plant development and is finely regulated once transferred into the plant host. Both from the study of the effects and biochemical function of therol genes and from the analysis of their regulation, important insight in plant development can be derived. Some of the most intriguing aspects of past, current and future research on this gene system are highlighted and discussed.  相似文献   

14.
An originalAgrobacterium tumefaciens-mediated transformation procedure, based on the actions of both wild type and disarmed bacterial strains, was developed. Theaux2 gene ofA. rhizogenes was introduced into a rapid-cycling genotype of cabbage (Brassica oleracea L.). Theaux2 gene product converts naphthalene acetamide into the auxin naphthalene acetic acid. Expression of this gene in the transgenic progeny grownin vitro led to an altered root phenotype. On a medium supplemented with napthalene acetamide (NAM), two of the three analysed progenies were characterized by the formation of callus instead of roots, whereas on a NAM-free medium all the plantlets from these progenies presented a normal phenotype. Expression of theaux2 gene was also assessed under horticultural conditions by sowing seeds in sand and watering them with a nutritive solution supplemented with NAM. Under these conditions, NAM inhibited the formation of a root system in transgenic plantlets and induced the death of the transgenic plantlets three to four weeks after germination. Thus,aux2 acts as a lethal conditional marker which could be used in negative selection of cabbage. Potential utilization of theaux2 gene to screen spontaneous androgenetic plants in order to transfer cytoplasmic male sterility in a single generation is discussed.  相似文献   

15.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

16.
A method for Agrobacterium tumefaciens-mediated transformation of Pinus radiata cotyledon explants was developed using commercially available open-pollinated seed. Pinus radiata is the most widely planted commercial conifer species in the Southern Hemisphere. Reports on transformation of this species have relied on particle bombardment of embryogenic callus derived from immature embryos. The main drawback to the method is the small number of genotypes that are amenable to transformation and regeneration. Since more than 80% of genotypes of radiata pine can be regenerated using cotyledons from mature seed, cotyledon explants were cocultivated with A. tumefaciens strain AGL1 containing a plasmid coding for the neomycin phosphotransferase II (nptII) gene and the -glucuronidase (GUS) gene (uidA). Transformed shoots were selected using either geneticin or kanamycin. Critical factors for successful transformation were survival of the cotyledons after cocultivation and selection parameters. Of the 105 putative transformants that were recovered from selection media, 70% were positive for integration of the nptII gene when analysed by PCR. GUS histochemical assay for uidA expression was unreliable because of reaction inhibition by unidentified compounds in the pine needles. Further, only 4 of the 26 independent transformants characterised by PCR and Southern analysis contained an intact copy of both genes. The remaining 22 transformants appeared to have a truncated or rearranged copy of the T-DNA. It is possible that the truncation/rearrangements are due to the Cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the T-DNA junction sites and sequencing of the introduced DNA will help elucidate the nature of T-DNA insertion so that genetic modification of radiata pine can be targeted effectively.Communicated by P. Debergh  相似文献   

17.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

18.
Summary Transgenic plants of Osteospermum ecklonis were produced by cocultivation of leaf fragments with Agrobacterium tumefaciens harboring rol genes from A. rhizogenes. The phenotypic alterations caused by the different transgenes were evaluated in field trials. The genetic manipulation produced transgenic plants characterized by the following features: 1) increased number of flowers (e.g., 35SrolC and rolABC); 2) early flowering (e.g., 35SrolC); 3) change of plant growth habit: erect (rolAB, rolABC and 35SrolC) with an increased number of branches (e.g., rolABC). The color of leaves was pale green in 35SrolC and dark green in rolAB transgenic plants. In conclusion this work reports: 1) genetic engineering of the ornamental species O. ecklonis, 2) modification of the main ornamental traits of this species by rol genes, and 3) segregation of the transgenes in the progeny.  相似文献   

19.
AnAgrobacterium rhizogenes-mediated procedure for transformation of papaya (Carica papaya) was developed. Transgenic plants were obtained from somatic embryos that spontaneously formed at the base of transformed roots, induced from leaf discs infected withA. rhizogenes. Transformation was monitored by autonomous growth of roots and somatic embryos, resistance to kanamycin, β-glucuronidase activity (GUS), and Southern hybridization analysis. Over one-third of the infected leaf explants produced transformed roots with GUS activity, from which 10% spontaneously produced somatic embryos. Histological analysis ofA. rhizogenes-transformed embryos showed that they have an altered symmetry between the shoot apex and the root meristem when compared to somatic embryos induced with hormone treatment from control explants. Transgenic papaya plants containingA. rhizogenes rol genes were more sensitive to auxins, developed wrinkled leaves, and grew slower than nontransformed plants.  相似文献   

20.
Prospects for the applications ofrol genes for crop improvement are discussed. As suggested in many reports, rol genes are suitable tools to modify plant developmental processes, such as formation of adventitious roots and release of axillary buds from apical dominance. Practical applications, however, might be hampered by the many pleiotropic side effects that are observed in plants transformed withrol genes. Alternative approaches need to be developed, therefore, to overcome these undesired effects. We offer a novel approach for application that is clearly different from earlier strategies, and that is based on the application ofrol genes incombination plants; i.e., plants consisting of an untransformed scion grafted on a rootstock transformed with arol gene. In rose it was demonstrated for the first time that expression ofrol genes in rootstocks led to an accelerated release of axillary buds of the untransformed scion, but without the transmission of many undesired pleiotropic effects. We expect that this stimulation will result in a changed plant architecture leading to a more efficient production of roses. Alternatively, the pleiotropic effects may be overcome by employingrol genes that are driven by organ- or tissue-specific promoters, leading to a more defined expression of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号