首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diambra L  Malta CP 《PloS one》2012,7(3):e33912
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.  相似文献   

2.
Murad A  Emery-Le M  Emery P 《Neuron》2007,53(5):689-701
A fundamental property of circadian rhythms is their ability to persist under constant conditions. In Drosophila, the ventral Lateral Neurons (LNvs) are the pacemaker neurons driving circadian behavior under constant darkness. Wild-type flies are arrhythmic under constant illumination, but flies defective for the circadian photoreceptor CRY remain rhythmic. We found that flies overexpressing the pacemaker gene per or the morgue gene are also behaviorally rhythmic under constant light. Unexpectedly, the LNvs do not drive these rhythms: they are molecularly arrhythmic, and PDF--the neuropeptide they secrete to synchronize behavioral rhythms under constant darkness--is dispensable for rhythmicity in constant light. Molecular circadian rhythms are only found in a group of Dorsal Neurons: the DN1s. Thus, a subset of Dorsal Neurons shares with the LNvs the ability to function as pacemakers for circadian behavior, and its importance is promoted by light.  相似文献   

3.
Substantial progress has been made in unraveling the organization of the circadian system of Aplysia californica. There are at least three circadian pacemakers in Aplysia. One has been localized in each eye and a third lies outside the eyes. Removal of the eyes disrupts the free-running locomotor activity rhythm; however, an extraocular oscillator can mediate a free-running rhythm in some eyeless animals. Although photoreceptors sufficient for entrainment of the ocular oscillator have been localized in the retina, photoreceptors outside the eyes are capable of "driving" a diurnal rhythm of locomotor activity and may also influence entrainment of ocular pacemakers. Finally, attention has been focused on the optic nerve as a coupling pathway between various parts of the system. The evidence suggests that information transmitted in the optic nerves is involved in entrainment of the ocular pacemaker by light, and in ocular control of the locomotor activity rhythm.  相似文献   

4.
Odors elicit a number of behavioral responses, including attraction and repulsion in Drosophila. In this study, the authors used a T-maze apparatus to show that wild-type Drosophila melanogaster exhibit a robust circadian rhythm in the olfactory attractive and repulsive responses. These responses were lower during the day and began to rise at early night, peaking at about the middle of the night and then declining thereafter. They were also independent of locomotor activity. The olfactory response rhythms were lost in period or timeless mutant flies (per0, tim0), indicating that clock genes control circadian rhythms of olfactory behavior. The rhythms in olfactory response persisted in the absence of the pigment-dispersing factor neuropeptide or the central pacemaker lateral neurons known to drive circadian patterns of locomotion and eclosion. These results indicate that the circadian rhythms in olfactory behavior in Drosophila are driven by pacemakers that do not control the rest-activity cycle and are likely in the antennae.  相似文献   

5.
This study presents evidence for the conservation of Drosophila per gene homologs in mammalian DNA and for their expression in a number of tissues which are involved in various aspects of circadian timekeeping. Distinct 5 kb sequences, which hybridized to a non repetitive fragment of the Drosophila per gene under stringent conditions, were detected by Southern blotting. Sequences homologous to per gene of Drosophila were also amplified from rat and mouse brain cDNA libraries and from a mouse anterior hypothalamus and human hypothalamus libraries. Degenerate PCR primer design was based on conserved segments of the per protein. The per homologs were shown directly (by RT-PCR) to be expressed in hamster and mouse SCN, in hamster heart and in Aplysia and Bulla eyes.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Summary Under constant conditions the compound eyes of the ground beetleAnthia sexguttata exhibit sensitivity changes in a very clear circadian rhythm. Usually the rhythms in both eyes in constant darkness are mutually coupled. After transection of the optic tract between the lobula and the supraesophageal ganglion the circadian rhythms of the two eyes continue without interruption, but coupling between them is abolished. Even if the entire supraesophageal ganglion is removed, leaving the optic ganglia intact, the circadian rhythms in the eyes continue without interruption independently. But the rhythm is abolished if the region of the lobula is damaged.The experiments show thatAnthia has circadian pacemakers in the left and right optic ganglia in or close to the lobula. These pacemakers can function independently from the rest of the brain and control circadian rhythms of physiological events.Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 45 Vergleichende Neurobiologie des Verhaltens E1  相似文献   

13.
Our previous studies showed that the eyes of Japanese quail contain a biological clock that drives a daily rhythm of melatonin synthesis. Furthermore, we hypothesized that these ocular clocks are pacemakers because eye removal abolishes freerunning rhythms in constant darkness (DD). If the eyes are indeed acting as pacemakers, we predicted that the two ocular pacemakers in an individual bird must remain in phase in DD and, furthermore, the two ocular pacemakers would rapidly regain coupling after being forced out of phase. These predictions were confirmed by demonstrating that 1) the ocular melatonin rhythms of the two eyes maintained phase for at least 57 days in DD and 2) after ocular pacemakers were forced out of phase by alternately patching the eyes in constant light, two components of body temperature were observed that fused into a consolidated rhythm after 5-6 days in DD, showing pacemaker recoupling. The ability to maintain phase in DD and rapidly recouple after out-of-phase entrainment demonstrates that the eyes are strongly coupled pacemakers that work in synchrony to drive circadian rhythmicity in Japanese quail.  相似文献   

14.
Earlier work has indicated that the period length of Drosophila circadian behavioral rhythms is dependent on the abundance of the period (per) gene product. Increased expression of this gene has been associated with period shortening for both the circadian eclosion (pupal hatching) rhythm and circadian locomotor activity rhythms of adult Drosophila. In this study it is shown that a wide variety of missense mutations, affecting a region of the per protein consisting of approximately 20 aa, predominantly generate short period phenotypes. The prevalence of such mutations suggests that short period phenotypes may result from loss or depression of function in this domain of the per protein. Possibly mutations in the region eliminate a regulatory function provided by this segment, or substantially increase stability of the mutant protein.  相似文献   

15.
Cellular circadian pacemaking and the role of cytosolic rhythms   总被引:3,自引:0,他引:3  
  相似文献   

16.
The neurobiological substratum of circadian rhythmicity encompasses three levels of integration: firstly, generation of time signals by circadian pacemakers; secondly, entrainment of pacemakers by environmental influences; thirdly, coupling of circadian pacemakers among themselves and with target systems responsible for the expression of overt rhythms. From recent contributions, the notion that circadian organization results from the interaction of independent oscillators and pathways has been strengthened. In addition, recent evidence supports the existence of circadian rhythmicity in single isolated neurons. New information was produced on the gene control of circadian rhythm generation in Drosophila, as well as interesting advances in the understanding of neuronal mechanisms involved in the generation, entrainment and coupling of circadian rhythms in various species.  相似文献   

17.
18.
19.
In Aplysia californica, memory formation for long-term sensitization (LTS) and for a more complex type of associative learning, learning that food is inedible (LFI), is modulated by a circadian clock. For both types of learning, formation of long-term memory occurs during the day and significantly less during the night. Aplysia eyes contain a well-characterized circadian oscillator that is strongly coupled to the locomotor activity rhythm. Thus, the authors hypothesized that the ocular circadian oscillator was responsible for the circadian modulation of LFI and LTS. To test this hypothesis, they investigated whether the eyes were necessary for circadian modulation of LFI and LTS. Eyeless animals trained during the subjective day and tested 24 h later demonstrated robust long-term memory for both LFI and LTS, while eyeless animals trained and tested during the subjective night showed little or no memory for LFI or LTS. The amplitude of the rhythm of modulation in eyeless animals was similar to that of intact Aplysia, suggesting that extraocular circadian oscillators were mainly responsible for the circadian rhythms in long-term memory formation. Next, the authors investigated whether the eyes played a role in photic entrainment for circadian regulation of long-term memory formation. Eyeless animals were exposed to a reversed LD cycle for 7 days and then trained and tested for long-term memory using the LFI paradigm. Eyeless Aplysia formed significant long-term memory when trained during the projected shifted day but not during the projected shifted night. Thus, the extraocular circadian oscillator responsible for the rhythmic modulation of long-term memory formation can be entrained by extraocular photoreceptors.  相似文献   

20.
The eyes of the marine snail Bulla gouldiana act as circadian pacemakers. The eyes exhibit a circadian variation in spontaneous optic nerve compound action potential frequency in constant darkness, and are involved in controlling circadian rhythms in behavioral activity expressed by the animal. To initiate an investigation of the molecular aspects of circadian rhythmicity in the Bulla eye and to identify specific molecular markers in the nervous system, we raised monoclonal antibodies (MAb) to the eye and screened them for specific patterns of staining in the eye and brain. Several MAb recognize antigens specific to groups of neurons in the brain, whereas others stain antigens found only in the eye. In addition, some antigens are shared by the eye and the brain. The antigens described here include molecules that mark the lens, retina, neural pathways between the eye and the brain, specific groups of neurons within the central ganglia, and an antigen that is shared by basal retinal neurons (putative ocular circadian pacemaker cells) and glia. These molecular markers may have utility in identifying functionally related groups of neurons, elucidating molecular specializations of the retina, and highlighting pathways used in transmission of information between the retina and the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号