首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonsteroidal antiinflammatory drugs (NSAIDs) induce apoptosis in a variety of cancer cells, including those of colon, prostate, breast and leukemia. In addition, the classical NSAIDs sulindac and aspirin are promising chemopreventive agents against colon cancer. NSAIDs inhibit cyclooxygenases (COX) preventing the formation of prostaglandins, prostacyclin and thromboxane. NSAIDs also exert other biological effects, including generation of reactive oxygen species (ROS) and inhibition of NF-kappaB-mediated signals. Despite many suggested mechanisms for their anticancer effects, it remains uncertain how they induce cell cycle arrest and apoptosis in cancer cells. Furthermore, there is little information on the selectivity of NSAIDs-mediated anticancer effects, although this is one of the most important issues in cancer therapy. Increased understanding of the biological basis for the anticancer activity of NSAIDs and their selectivity is essential for future therapeutic advances. In this paper, we propose that increased ROS generation is one of the key mechanisms for NSAIDs-mediated anticancer effects on various cancer cells.  相似文献   

2.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

3.
beta-Amyloid (Abeta) is the primary protein component of senile plaques in Alzheimer's disease (AD) and has been implicated in neurotoxicity associated with the disease. Abeta aggregates readily in vitro and in vivo, and its toxicity has been linked to its aggregation state. Prevention of Abeta aggregation has been investigated as a means to prevent Abeta toxicity associated with AD. Recently we found that Hsp20 from Babesia bovis prevented both Abeta aggregation and toxicity [S. Lee, K. Carson, A. Rice-Ficht, T. Good, Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity, Protein Sci. 14 (2005) 593-601.]. In this work, we examined the mechanism of Hsp20 interaction with Abeta1-40 and compared its activity to that of other small heat shock proteins, carrot Hsp17.7 and human Hsp27. While all three small heat shock proteins were able to prevent Abeta aggregation, only Hsp20 was able to attenuate Abeta toxicity in cultured SH-SY5Y cells. Understanding the mechanism of the Hsp20-Abeta interaction may provide insights into the design of the next generation of Abeta aggregation and toxicity inhibitors.  相似文献   

4.
Cultured cerebellar granule cells underwent apoptotic degeneration when grown in medium containing 10 instead of 25 mM K+. Knowing that apoptosis is associated with changes in the expression of primary response genes, we have measured c-fos, zif/268, and c-jun mRNA levels during maturation of cultured granule cells grown in 10 or 25 mM K+. The constitutive expression of c-fos and zif/268 was differentially regulated by extracellular K+ concentration at 5 days of maturation in vitro (DIV), when cells grown under suboptimal conditions (i.e. in 10 mM K+) are committed to degenerate. At this stage, c-fos mRNA levels were detectable only in cultures grown in 25 mM K+, whereas zif/268 mRNA levels were dramatically elevated in cultures grown in 10 mM K+. This provides one of the few conditions in which c-fos and zif/268 are differentially regulated in nerve cells. Substantial changes in c-jun, or -actin mRNA levels were detectable only at 7 DIV, when the percentage of apoptotic cells had already reached a plateau in ultures grown in 10 mM K+. We speculate that changes in the expression of zif/268 are important in the gene program associated with the induction of apoptosis by trophic deprivation in cultured neurons.Special issue dedicated to Dr. Robert Balázs  相似文献   

5.
Methotrexate (MTX) is used not only for the cancer chemotherapy but also for the treatment of rheumatic disease, often together with non-steroidal anti-inflammatory drugs (NSAIDs). MTX is actively cotransported with H(+) in the small intestine, mediated by a reduced folate carrier (RFC). The coadministration of some NSAIDs with MTX to rats caused a decrease of MTX absorption through the small intestine. This may be due to the uncoupling effect of oxidative phosphorylation of the NSAIDs. The present study investigated whether flufenamic acid, diclofenac and indomethacin, NSAIDs, decreased ATP content of rat-derived intestinal epithelial cell line IEC-6 cells and affected the MTX transport in IEC-6 cells. The MTX uptake in IEC-6 cells was dependent on medium pH and maximum around pH 4.5-5.5. The MTX uptake was composed of a transport inhibited by 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and a non-saturable one. The DIDS-sensitive component in the MTX uptake showed a saturation kinetics (Michaelis-Menten constant (Km): 3.91 +/- 0.52 microM, Maximum velocity (Vmax): 94.66 +/- 6.56 pmol/mg protein/5 min). The cellular ATP content in IEC-6 cells decreased significantly at 30 min after the cells were started to incubate with the NSAIDs (250 microM flufenamic acid, 500 microM diclofenac and 500 microM indomethacin). The MTX uptake in IEC-6 cells in the presence of the NSAIDs decreased with the reduction of cellular ATP content and showed a good correlation with the ATP content (correlation coefficient: 0.982). Thus it seems likely that the ATP content in IEC-6 cells with the NSAIDs decreased due to the uncoupling effect of oxidative phosphorylation of the NSAIDs, resulting in the inhibition of the secondary active transport of MTX in IEC-6 cells. The present results also suggest that IEC-6 cells are useful to evaluate the drug interaction relating to this carrier system.  相似文献   

6.
A F Crine  R M Buijs 《Peptides》1987,8(2):243-246
Rats exposed for three minutes to repeated electric footshocks showed an approximate 10-fold increase of basal plasma vasopressin (AVP) and oxytocin (OXT) levels. In contrast, spinal AVP and OXT contents measured in the same rats remained unchanged when compared to undisturbed controls. This observation suggests that spinal AVP and OXT do not play a major role in the short-term adaptation of the organism to stress.  相似文献   

7.
8.
9.
In recent studies, induction of the heat shock response increased IL-6 production in gut mucosa in vivo and in cultured Caco-2 cells in vitro. The heat shock response is associated with increased survival of cells exposed to otherwise lethal hyperthermia, so called thermotolerance, but the role of IL-6 in the induction of thermotolerance is not known. We tested the hypothesis that treatment of cultured Caco-2 cells with IL-6 results in the development of thermotolerance. Cells were treated with human recombinant IL-6 for 1h followed by 3 h recovery in cytokine-free medium whereafter cells were exposed to heat stress (48 degrees C for 2 h). In untreated cells, the heat stress resulted in an approximately 80% cell death. In cells treated with IL-6, cell viability after heat stress was significantly improved and was doubled at an IL-6 concentration of 20 ng/ml. Treatment of the cells with other cytokines (IL-4, IL-10, IL-1beta, or TNFalpha) did not induce thermotolerance, suggesting that the effect of IL-6 may be specific for this cytokine. The induction of thermotolerance by IL-6 was blocked by an IL-6 receptor antibody, suggesting that the development of thermotolerance was receptor-mediated. Treatment of cells with IL-6 did not induce an heat shock response as suggested by unaltered heat shock protein 70 and 90 levels and unaffected heat shock factor DNA binding activity. In addition, the IL-6-induced thermotolerance was not inhibited by quercetin. The present study provides the first evidence of IL-6-induced thermotolerance and suggests that this effect of IL-6 is independent of the heat shock response.  相似文献   

10.
Release of acetylcholinesterase by cultured spinal cord cells   总被引:9,自引:0,他引:9  
The release of acetylcholinesterase from neurons was studied using cultured chick-embryo spinal-cord cells. Cells dissociated from 12-day-old chick-embryo spinal cords were grown in culture for 10-12 days. Numerous well differentiated spinal neurons were found after 7-10 days in culture. Acetylcholinesterase activity per dish increased by 60-fold from days 2-12. Acetylcholinesterase was released into the surrounding media by the cells when they were incubated either in the standard culture medium or the serum-free medium. Acetylcholinesterase release was significantly reduced when protein synthesis and microtubules were disrupted by cycloheximide and colchicine, respectively. Histochemical localization of acetylcholinesterase indicated that the synthesis and relase of acetylcholinesterase are attributable to neurons. Cultured chick-embryo brain and neuroblastoma cells also released acetylcholinesterase into the media. These results are discussed with regard to possible physiological roles for acetylcholinesterase secretion from neurons.  相似文献   

11.
Temperature-dependent changes of growth rate and protein components were investigated for primary cultured cells derived from goldfish caudal fin. When the culture temperature was shifted from 20 degrees C to 35 degrees C and 40 degrees C, the growth rate was increased at 35 degrees C as compared with that at 20 degrees C, but no cell growth was observed at 40 degrees C. The differential scanning calorimetry demonstrated the onset of the endothermic reaction for goldfish cellular components at 40 degrees C. Therefore, the temperature shift to 40 degrees C was found to be of severe heat shock for goldfish cultured cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that, although expression of 70-kDa components was slightly induced at 35 degrees C, the temperature shift to 40 degrees C markedly induced the expression of the 30-kDa component in addition to that of 70-kDa component. The N-terminal amino acid sequencing identified the 30- and 70-kDa components to be heat shock protein (Hsp)-30 and Hsp70, respectively. Northern blot analysis revealed that the enhanced Hsp30 messenger ribonucleic acid (mRNA) levels were only observed at 40 degrees C, whereas Hsp70 mRNA was slightly accumulated at 35 degrees C. These results indicated that Hsp30 might have important functions under severe heat stress condition.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, the splicing of mRNA precursors is disrupted by a severe heat shock. Mild heat treatments prior to severe heat shock protect splicing from disruption, as was previously reported for Drosophila melanogaster. In contrast to D. melanogaster, protein synthesis during the pretreatment is not required to protect splicing in yeast cells. However, protein synthesis is required for the rapid recovery of splicing once it has been disrupted by a sudden severe heat shock. Mutations in two classes of yeast hsp genes affect the pattern of RNA splicing during the heat shock response. First, certain hsp70 mutants, which overproduce other heat shock proteins at normal temperatures, show constitutive protection of splicing at high temperatures and do not require pretreatment. Second, in hsp104 mutants, the recovery of RNA splicing after a severe heat shock is delayed compared with wild-type cells. These results indicate a greater degree of specialization in the protective functions of hsps than has previously been suspected. Some of the proteins (e.g., members of the hsp70 and hsp82 gene families) help to maintain normal cellular processes at higher temperatures. The particular function of hsp104, at least in splicing, is to facilitate recovery of the process once it has been disrupted.  相似文献   

13.
Two types of heat shock factors in cultured tobacco cells   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Interaction of heat and salt shock in cultured tobacco cells   总被引:8,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

16.
NSAIDs are potent chemopreventive agents for colon cancer. Although their mechanism of action is unknown, it probably relates to their modulation of colon epithelial cell kinetics, i.e. apoptosis and/or cell proliferation. NSAIDs are pleiotropic in their biochemical activities; their best known effect is inhibition of prostaglandin H synthase (PHS), the enzyme catalyzing the biosynthesis of prostaglandins. Current data appear to lead to two conflicting conclusions. One body of data indicates that PHS is important in induction of apoptosis and colon carcinogenesis and that its inhibition by NSAIDs is required for induction of apoptosis and their overall chemopreventive effect. Another set of data indicates that NSAIDs may induce apoptosis and prevent colon cancer without inhibiting the activity of PHS. Both sides of this argument are presented and discussed. This apparent contradiction may be resolved if one accepts that both mechanisms are correct but that they act on different steps of this multistep process.  相似文献   

17.
18.
J E Keller  E A Neale  G Oyler  M Adler 《FEBS letters》1999,456(1):137-142
Primary dissociated fetal mouse spinal cord cultures were used to study the mechanisms underlying the differences in persistence of botulinum neurotoxin A (BoNT/A) and botulinum neurotoxin/E (BoNT/E) activities. Spinal cord cultures were exposed to BoNT/A (0.4 pM) for 2-3 days, which converted approximately half of the SNAP-25 to an altered form lacking the final nine C-terminal residues. The distribution of toxin-damaged to control SNAP-25 remained relatively unchanged for up to 80 days thereafter. Application of a high concentration of BoNT/E (250 pM) either 25 or 60 days following initial intoxication with BoNT/A converted both normal and BoNT/A-truncated SNAP-25 into a single population lacking the final 26 C-terminal residues. Excess BoNT/E was removed by washout, and recovery of intact SNAP-25 was monitored by Western blot analysis. The BoNT/E-truncated species gradually diminished during the ensuing 18 days, accompanied by the reappearance of both normal and BoNT/A-truncated SNAP-25. Return of BoNT/A-truncated SNAP-25 was observed in spite of the absence of BoNT/A in the culture medium during all but the first 3 days of exposure. These results indicate that proteolytic activity associated with the BoNT/A light chain persists inside cells for > 11 weeks, while recovery from BoNT/E is complete in < 3 weeks. This longer duration of enzymatic activity appears to account for the persistence of serotype A action.  相似文献   

19.
By means of monoclonal antibodies (fluorescein-isothiocyanate- and rhodamine-labelled) distribution and quantitative content of the main cytoskeleton proteins (actin, tubulin, neurofilamentous protein with the molecular mass of 160 kDa and glial fibrillar acid protein) has been studied in various types of the mouse embryos spinal cord cells, cultivated in monolayer. During the process of development of neurons tubulin displaces from the neuronal soma into its processes with its predominant concentration in some of them, which are probably more active functionally at certain stages of differentiation. The total amount of tubulin is supposed to remain stable during the neuron life time. Quantitative content and distribution of actin filaments in various types of the cells are different. Actin content in the neurons is much lower than in glial cells and fibroblasts. The major amount of protein (neurofilamentous, glial fibrillar acid protein) is concentrated in cell bodies and in proximal parts of the processes. The pattern of distribution of the cytoskeleton proteins in the spinal cord cells has been revealed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号