首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using high resolution proton NMR spectroscopy, we have investigated 10 human hemoglobin variants modified in the proximal side of the heme pocket in beta subunits. Comparative observation of several resonances in the spectra of liganded and unliganded hemoglobins allowed us to characterize the localization and nature of the structural perturbations induced by amino acid substitutions or chemical modification. The present data indicate that the structural perturbations are localized in the beta subunits, mainly in the tertiary domain surrounding the modification site. Analysis of the aromatic region of the liganded hemoglobin spectra gives substantial information for the assignment of the His-beta 97 C-2H resonance. Correlation of the spectroscopic observations with the functional characteristics of the studied hemoglobins demonstrates that structural factors localized in the proximal side of the heme pocket can control the ligand-iron interaction taking place on the other heme side. The structural perturbations induced by the modifications in the F or FG segments of the beta subunits do not extend to the distal side but rather to the alpha 1 beta 2 interface. This argues the existence of a gradient of tertiary structural stability, indicating a possible structural pattern of heme-heme interaction in the cooperativity control.  相似文献   

2.
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.  相似文献   

3.
We describe a technique for rapid fine mapping of sites of torsion-induced perturbations of DNA structure. The technique involves strand scission or chemical base modification at structurally perturbed sites, replication arrest in a double-strand DNA sequencing reaction, and size analysis of replication products by electrophoresis on sequencing gels. Besides being less complicated and faster than site identification by conventional end-labeling methods, the technique assures high sequence specificity through the use of oligomeric sequencing primers. This property should be useful for in vivo mapping of DNA structural perturbations with known sequence within complex genomes.  相似文献   

4.
Chemical shift mapping is becoming a popular method for studying protein-protein interactions in solution. The technique is used to identify putative sites of interaction on a protein surface by detecting chemical shift perturbations in simple (1H, 15N)-HSQC NMR spectra of a uniformly labeled protein as a function of added (unlabeled) target protein. The high concentrations required for these experiments raise questions concerning the possibility for non-specific interactions being detected, thereby compromising the information obtained. We demonstrate here that the simple chemical shift mapping approach faithfully reproduces the known functional specificities among pairs of closely related proteins from the phosphoenolpyruvate:sugar phosphotransferase systems of Escherichia coli and Bacillus subtilis.  相似文献   

5.
Nuss JE  Sweeney DJ  Alter GM 《Biochemistry》2006,45(32):9804-9818
Replication protein A (RPA) is an essential heterotrimeric ssDNA binding protein that participates in DNA repair, replication, and recombination. Though X-ray and NMR experiments have been used to determine three-dimensional structure models of the protein's domain fragments, a complete RPA structural model has not been reported. To test whether the fragment structures faithfully represent the same portions in the native solution-state protein, we have examined the structure of RPA under biologically relevant conditions. We have probed the location of multiple amino acids within the native RPA three-dimensional structure using reactivity of these amino acids toward proteolytic and chemical modification reagents. In turn, we evaluated different structural models by comparing the observed native RPA reactivities with anticipated reactivities based on candidate structural models. Our results show that our reactivity analysis approach is capable of critically assessing structure models and can be a basis for selecting the most relevant from among alternate models of a protein structure. Using this analytical approach, we verified the relevance of RPA fragment models to the native protein structure. Our results further indicate several important features of native RPA's structure in solution, such as flexibility at specific locations in RPA, particularly in the C-terminal region of RPA70. Our findings are consistent with reported DNA-free structural models and support the role of conformational change in the ssDNA binding mechanism of RPA.  相似文献   

6.
7.
The development of new and effective drugs is strongly affected by the need to identify drug targets and to reduce side effects. Resolving these issues depends partially on a thorough understanding of the biological function of proteins. Unfortunately, the experimental determination of protein function is expensive and time consuming. To support and accelerate the determination of protein functions, algorithms for function prediction are designed to gather evidence indicating functional similarity with well studied proteins. One such approach is the MASH pipeline, described in the first half of this paper. MASH identifies matches of geometric and chemical similarity between motifs, representing known functional sites, and substructures of functionally uncharacterized proteins (targets). Observations from several research groups concur that statistically significant matches can indicate functionally related active sites. One major subproblem is the design of effective motifs, which have many matches to functionally related targets (sensitive motifs), and few matches to functionally unrelated targets (specific motifs). Current techniques select and combine structural, physical, and evolutionary properties to generate motifs that mirror functional characteristics in active sites. This approach ignores incidental similarities that may occur with functionally unrelated proteins. To address this problem, we have developed Geometric Sieving (GS), a parallel distributed algorithm that efficiently refines motifs, designed by existing methods, into optimized motifs with maximal geometric and chemical dissimilarity from all known protein structures. In exhaustive comparison of all possible motifs based on the active sites of 10 well-studied proteins, we observed that optimized motifs were among the most sensitive and specific.  相似文献   

8.
We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1‐PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N‐hydroxysuccinimidobiotin (NHS‐biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS‐biotin when compared with the [PB1‐PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three‐ and twofold, respectively, less accessible to biotinylation in the PB1‐PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q‐POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q‐POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs.  相似文献   

9.
Resonance Raman studies of CuA-modified cytochrome c oxidase   总被引:1,自引:0,他引:1  
Modification of the CuA site in mammalian cytochrome c oxidase has been used to elucidate the functional role of this center in the catalytic cycle of the enzyme. Both heat treatment in detergents and chemical modification by p-(hydroxymercuri)benzoate (pHMB) convert CuA to a lower potential type II center and effectively remove the site from the electron-transfer pathway during turnover. In this study, resonance Raman spectroscopy has been employed to investigate the effects of these CuA modifications on the heme active sites. The Raman data indicate some environmental perturbation of the heme a3 chromophore in the modified derivatives. Only pHMB modification and SB-12 heat treatment produced significant effects in the Raman spectra of the fully reduced enzyme. These perturbations are much less evident in the spectra obtained within 10 ns of CO photolysis from the fully reduced species of the modified enzymes. Transient Raman studies further indicate that the half-time for CO religation in the modified enzymes is quite similar to that of the native protein.  相似文献   

10.
We studied the reactivity of 35 genetically engineered Cys sulphydryl groups at different locations in Escherichia coli FepA. Modification of surface loop residues by fluorescein maleimide (FM) was strongly temperature-dependent in vivo , whereas reactivity at other sites was much less affected. Control reactions with bovine serum albumin showed that the temperature dependence of loop residue reactivity was unusually high, indicating that conformational changes in multiple loops (L2, L3, L4, L5, L7, L8, L10) transform the receptor to a more accessible form at 37°C. At 0°C colicin B binding impaired or blocked labelling at 8 of 10 surface loop sites, presumably by steric hindrance. Overall, colicin B adsorption decreased the reactivity of more than half of the 35 sites, in both the N- and C- domains of FepA. However, colicin B penetration into the cell at 37°C did not augment the chemical modification of any residues in FepA. The FM modification patterns were similarly unaffected by the tonB locus. FepA was expressed at lower levels in a tonB host strain, but when we accounted for this decrease its FM labelling was comparable whether TonB was present or absent. Thus we did not detect TonB-dependent structural changes in FepA, either alone or when it interacted with colicin B at 37°C. The only changes in chemical modification were reductions from steric hindrance when the bacteriocin bound to the receptor protein. The absence of increases in the reactivity of N-domain residues argues against the idea that the colicin B polypeptide traverses the FepA channel.  相似文献   

11.
Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.  相似文献   

12.
Functional sites determine the activity and interactions of proteins and as such constitute the targets of most drugs. However, the exponential growth of sequence and structure data far exceeds the ability of experimental techniques to identify their locations and key amino acids. To fill this gap we developed a computational Evolutionary Trace method that ranks the evolutionary importance of amino acids in protein sequences. Studies show that the best-ranked residues form fewer and larger structural clusters than expected by chance and overlap with functional sites, but until now the significance of this overlap has remained qualitative. Here, we use 86 diverse protein structures, including 20 determined by the structural genomics initiative, to show that this overlap is a recurrent and statistically significant feature. An automated ET correctly identifies seven of ten functional sites by the least favorable statistical measure, and nine of ten by the most favorable one. These results quantitatively demonstrate that a large fraction of functional sites in the proteome may be accurately identified from sequence and structure. This should help focus structure-function studies, rational drug design, protein engineering, and functional annotation to the relevant regions of a protein.  相似文献   

13.
Four Mn atoms function as catalysts in the water-oxidizing complex located on the oxidizing side of PS II. We have studied the involvement of amine groups of the PS II proteins in photoligation of Mn2+ to the apo water-oxidizing complex, using the combined techniques of photoactivation and chemical modification with the modifiers methyl acetimidate (MAI), acetic acid N-hydroxysuccinimide ester (NHS), and 2,4,6-trinitrobenzenesulfonic acid (TNBS). Chemical modification of hydroxylamine-treated PS II core complexes decreased their capacity for restoration of oxygen evolution and photoligation of Mn2+ to the apo water-oxidizing complex (WOC), but did not affect their electron transfer activity in the vicinity of PS II. The number of functional high-affinity Mn-binding sites, but not of low-affinity sites, was significantly modulated by chemical modification. Kinetic analysis of photoactivation with the repetitive flashes revealed that the intermediate generated during a photoactivation process was destabilized by the chemical modification. To identify which proteins possess the amine groups involved in ligation of functional Mn, we examined the difference in NHS biotinylation between PS II core complexes with and without the Mn cluster. NHS biotinylation resulting in altered ligation of functional Mn apparently occurred on three proteins: an antenna chlorophyll binding protein (CP47), a light-harvesting chlorophyll protein (CP29), and another chlorophyll binding protein (PS II-S). Of these proteins, only the Mn-dependent biotinylation of CP47 was found to occur independently of the application of an NHS-masking concentration before removal of the functional Mn. These results suggest that lysyl residues of CP47, and perhaps also CP29 and PS II-S, function in direct photoligation of Mn2+ to the apo WOC.  相似文献   

14.
Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes 12 proteins, post-translational modification (PTM) is important mechanism for modification, which consequently alters their function. A single protein exhibiting different functions in different locations or in different subcellular sites, are known to be 'moonlighting'. So there is a possibility that viral proteins moonlight in separate location and in different time to exhibit diverse cellular effects. Based on the primary sequence, the putative behaviour of proteins in cellular environment can be predicted, which helps to classify them into different functional families with high reliability score. In this study, sites for phosphorylation, glycosylation and SUMOylation of the six RV structural proteins (VP1, VP2, VP3, VP4, VP6 & VP7) & five non-structural proteins (NSP1, NSP2,NSP3,NSP4 & NSP5) and the functional families were predicted. As NSP6 is a very small protein and not required for virus growth & replication, it was not included in the study. Classification of RV proteins revealed multiple putative functions of each structural protein and varied number of PTM sites, indicating that RV proteins may also moonlight depending on requirements during viral life cycle. Targeting the crucial PTM sites on RV structural proteins may have implications in developing future anti-rotaviral strategies.  相似文献   

15.
Studies on chemical modifications of bacterial and mitochondrial complex I by synthetic chemical probes as well as endogenous chemicals have provided useful information on the structural and functional aspects of this enzyme. We herein reviewed recent studies that investigated chemical modifications of complex I by endogenous chemicals (e.g. Cys-S-nitrosation, Cys-S-glutathionylation, and Ser-O-phosphorylation) and synthetic reagents (e.g. Cys-SH modification by SH-reagents and the cross-linking of nearby subunits by bifunctional cross-linkers). We also reviewed recent photoaffinity labeling studies using complex I inhibitors, which can be recognized as “site-specific modification” by synthetic chemicals. In addition, we discussed the possibility of site-specific modification by various functional probes via ligand-directed tosylate (LDT) chemistry as a promising approach for unique biophysical studies on complex I.  相似文献   

16.
17.
8-17 DNAzyme is characterized by its recurrence in different in vitro selections and versatile cleavage sites, leading to extensive studies on its structural properties and applications. We evaluated the purine residues (A6, G7, G11, A12, G14, and A15) in the catalytic core of 8-17 DNAzyme of their five-membered ring moiety with purine analogs 1-5 to have an insight into the conservation of the residues at the level of functional groups. The 7-nitrogen atom in the AGC loop was demonstrated to be strictly conserved for the cleavage reaction. But such modifications exerted favorable effect at G11 of the base-pair stem and A12 in the single-strand loop, directing toward more efficient DNAzymes. Even the most conserved G14 could tolerate such modifications. These results demonstrated that chemical modification on the functional groups is a feasible approach to gain an insight into the structural requirement in the catalytic reaction of DNAzymes. It also provided modification sites for introduction of signaling molecules used for mechanistic and folding studies of 8-17 DNAzyme.  相似文献   

18.
Predicting the behavior of living organisms is an enormous challenge given their vast complexity. Efforts to model biological systems require large datasets generated by physical binding experiments and perturbation studies. Genetic perturbations have proven important and are greatly facilitated by the advent of comprehensive mutant libraries in model organisms. Small-molecule chemical perturbagens provide a complementary approach, especially for systems that lack mutant libraries, and can easily probe the function of essential genes. Though single chemical or genetic perturbations provide crucial information associating individual components (for example, genes, proteins or small molecules) with pathways or phenotypes, functional relationships between pathways and modules of components are most effectively obtained from combined perturbation experiments. Here we review the current state of and discuss some future directions for 'combination chemical genetics', the systematic application of multiple chemical or mixed chemical and genetic perturbations, both to gain insight into biological systems and to facilitate medical discoveries.  相似文献   

19.
Lugo MR  Sharom FJ 《Biochemistry》2005,44(42):14020-14029
The P-glycoprotein efflux pump, an ABC superfamily member, can export a wide variety of hydrophobic drugs, natural products, and peptides from cells, powered by the energy of ATP hydrolysis. Transport substrates appear to first partition into the membrane and then interact with the protein within the cytoplasmic leaflet. Two drug binding sites within P-glycoprotein have been described which interact allosterically, the H-site (binds Hoechst 33342) and the R-site (binds rhodamine 123); however, the structural and functional relationship between the various binding sites appears complex. In this work, we have used fluorescence spectroscopic approaches to characterize the interaction of the transporter with LDS-751 and rhodamine 123, both of which are believed to bind to the putative R-site based on functional transport studies. By carrying out single and sequential dual fluorescence titrations of purified P-glycoprotein with the two substrates, we observed that bound LDS-751 interacted with bound rhodamine 123. Rhodamine 123 and LDS-751 showed a reciprocal negative interaction, each reducing the binding affinity of the other by 5-fold, indicating that the two compounds were simultaneously bound to the protein to form a ternary complex. Fitting of the dependence of the apparent Kd for LDS-751 binding on rhodamine 123 concentration suggested that the two compounds interacted noncompetitively. We conclude that the two-site drug binding model for P-glycoprotein requires modification. The putative R-site appears large enough to accommodate two compounds simultaneously. The locations where LDS-751 and rhodamine 123 bind are likely adjacent to each other, possibly overlapping, and may be within a hydrophobic pocket.  相似文献   

20.
Structural studies of protein-ligand complexes are often limited by low solubility, poor affinity, and interfacial motion and, in NMR structures, by the lack of intermolecular NOEs. In the absence of other structural restraints, we use a procedure that compares simulated chemical shift perturbations to observed perturbations to better define the binding orientation of ligands with respect to protein surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号