首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The last two amino acids of the nascent peptide at the ribosomal P-site influence the efficiency of termination readthrough at the stop codon UGA (Mottagui-Tabar et al (1994) EMBO J 13, 249–257; Björnsson et al (1996) EMBO J 15, 1696–1704). Here we analyze this effect on readthrough by wild type or a UGA suppressor form (Su9) of tRNATrp by varying the codons at positions −1 and −2 at the 5′ side of UGA. Strains with wild-type or mutant (ArBr) forms of elongation factor Tu (EF-Tu) were analyzed (Vijgenboom et al (1985) EMBO J 4, 1049–1052). The effect on readthrough by changing these −1 and −2 codons is different on the two forms of tRNATrp and is also dependent on the structure of EF-Tu. Readthrough by the tRNATrp-derived suppressor, but not wild-type tRNATrp, is sensitive to the van der Waals volume of the last amino acid in the nascent peptide. Together with mutant EF-Tu, both forms of tRNATrp are sensitive. The data suggest that the C-terminal amino acid in the nascent peptide is in a functional interaction with the EF-Tu ternary complex. This interaction is changed by mutation in tRNATrp at position 24 or in EF-Tu at position 375. No indication of a changed interaction between the mutant EF-Tu and the penultimate amino acid could be found. Mutant forms of RF2 (Mikuni et al (1991) Biochimie 73, 1509–1516) and ribosomal proteins S4 and S12 (Fáxen et al (1988) J Bacteriol 170, 3756–3760) were found not to be altered in sensitivity to the last two amino acids in the nascent peptide.  相似文献   

7.
8.
9.
The trpX mutation in Escherichia coli reduces trp operon attenuation in strains carrying wild-type tRNATrp. The trpX? phenotype is alleviated (attenuation is restored) in UGA-suppressor tRNATrp-carrying strains (Yanofsky &; Soll, 1977).The tRNA from various trpX? strains was characterized biochemically. Sequence analyses of wild-type tRNATrp and UGA suppressor tRNATrp, both derived from trpX? strains, reveal an unmodified A in the position (adjacent to the anticodon) normally occupied by the hypermodified base ms2i6A.In addition, several tRNAs from trpX? cells were characterized by RPC-5 column chromatography. We find that only tRNAs normally having ms2i6A exhibit altered elution profiles when compared to the homologous tRNAs from trpX? cells. Introduction of the UGA suppressor into trpX? cells does not restore normal Chromatographic behavior. These results suggest that the trpX gene product is necessary for the synthesis of ms2i6A. Thus, we propose that miaA (for the first gene involved in ms2i6A synthesis) replaces the trpX designation.The results reported here are discussed with regard to a model proposed by Lee &; Yanofsky (1977) in which efficient translation of the tandem trp codons in the leader sequence RNA is required for normal attenuation of the trp operon.  相似文献   

10.
11.
Some novel transcription attenuation mechanisms used by bacteria   总被引:2,自引:0,他引:2  
  相似文献   

12.
Summary We constructed plasmid pAtrp46 in which lacZ gene expression is regulated by the attenuator of the Escherichia coli tryptophan (trp) operon. The attenuation of trp, which occurs in the presence of an excess of tryptophan, is reflected by a decrease in the expression of the lacZ gene of pAtrp46 in a trpR- strain. Experiments with pAtrp46 further support our previous results (Engelberg-Kulka et al. 1982b) that suppression of a UGA termination codon by normal charged tRNATrp, a process called UGA readthrough, is a necessary mechanism in trp attenuation. Our experiments also suggest that plasmid pAtrp46 is useful for studies of other aspects of trp attenuation.  相似文献   

13.
14.
15.
16.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

17.
Translation termination at UAG is influenced by the nature of the 5′ flanking codon inEscherichia coli. Readthrough of the stop codon is always higher in a strain with mutant (prfA1) as compared to wild-type (prfA+) release factor one (RF1). Isocodons, which differ in the last base and are decoded by the same tRNA species, affect termination at UAG differently in strains with mutant or wild-type RF1. No general preference of the last codon base to favour readthrough or termination can be found. The data suggest that RF1 is sensitive to the nature of the wobble base anticodon-codon interaction at the ribosomal peptidyl-tRNA binding site (P-site). For some isoaccepting P-site tRNAs (tRNA3ProversustRNA2Pro, tRNA4ThrversustRNA1,3Thr) the effect is different on mutant and wild-type RF1, suggesting an interaction between RF1 at the aminoacyl-tRNA acceptor site (A-site) and the P-site tRNA itself. The glycine codons GGA (tRNA2Gly) and GGG (tRNA2,3Gly) at the ribosomal P-site are associated with an almost threefold higher readthrough of UAG than any of the other 42 codons tested, including the glycine codons GGU/C, in a strain with wild-type RF1. This differential response to the glycine codons is lost in the strain with the mutant form of RF1 since readthrough is increased to a similar high level for all four glycine codons. High α-helix propensity of the last amino acid residue at the C-terminal end of the nascent peptide is correlated with an increased termination at UAG. The effect is stronger on mutant compared to wild-type RF1. The data suggest that RF1-mediated termination at UAG is sensitive to the nature of the codon-anticodon interaction of the wobble base, the last amino acid residue of the nascent peptide chain, and the tRNA at the ribosomal P-site.  相似文献   

18.
19.
Photochemical crosslinking studies on two formylmethionine tRNAs of Escherichia coli are consistent with the hypothesis that the role of 7-methylguanosine is to stabilize a tertiary structure of tRNA in which the “extra” loop is folded over so as to be close to the 4-thiouridine region of the molecule. In tRNAfmet 3, which differs from tRNAfmet 1 only by substitution of an adenosine for the 7-methylguanosine in the “extra” loop, crosslinking was virtually abolished when the tRNA was placed in 40 mm Na+, whereas tRNAfmet 1 in 40 mm Na+ was crosslinked to 95% of the maximum extent observed for both tRNAs in Mg2+. Even in Mg2+, a difference in structure between the two tRNAs could be detected by means of a two-fold decrease in the rate of crosslinking in tRNAfmet 3 as compared to tRNAfmet 1. Comparison of crosslinking in the native and metastable denatured forms of tRNATrp of E. coli revealed that these structures also differ with respect to the orientation and/or distance between 4-thiouridine (8) and cytidine (13), since denaturation abolished crosslinking. However, separation of these two residues is not obligatory for denaturation, since crosslinked tRNATrp could still be denatured. A 30% difference in fluorescence between the native and denatured forms of crosslinked-reduced tRNATrp infers an increase in hydrophilicity in the 4-thiouridine region upon denaturation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号