共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The uhp gene, which specifies the uptake of hexose phosphates, and several other genes in the vicinity of minute 81 on the E. coli linkage map have been located by phage-mediated transductions. The order found is mtl-gpsA-pyre-gltc-uhp-tna-dnaa. Alleles specifying the Uhp- and Uhp+ characters were separated from that specifying constitutivity of hexose phosphate uptake (Uhpc). Although cotransduction frequencies between gltC and uhp as high as 90%, and between uhp and tna as high as 80%, were observed, these frequencies were unusually strongly dependent on which marker was selected. This may be due to the proximity of the uhp region to the point of origin of chromosome replication. 相似文献
3.
Energy coupling of the hexose phosphate transport system in Escherichia coli 总被引:3,自引:5,他引:3
下载免费PDF全文

H H Winkler 《Journal of bacteriology》1973,116(1):203-209
The active transport of hexose phosphates in Escherichia coli was inhibited by many uncouplers or inhibitors of oxidative metabolism. Fluoride and the lipid soluble cation, triphenylmethylphosphonium, had little effect. The uninduced level of transport was sensitive to fluoride, but not to azide. After energy uncoupling of active transport, the cells could equilibrate their intracellular water with the glucose-6-phosphate in the medium and displayed exit counter-flow suggesting the existence of carrier-mediated transport in the energy-uncoupled cells. The uncoupled transport of glucose-6-phosphate was inhibited by fructose-6-phosphate; the uninduced level of glucose-6-phosphate transport was not inhibited by fructose-6-phosphate. After energy uncoupling, the influx had a low affinity suggesting that, unlike the transport of beta-galactosides, the energy coupling for the active transport of hexose phosphate involved a change in the affinity of influx. 相似文献
4.
Synthesis of the hexosephosphate transport system in Escherichia coli required the cyclic AMP-receptor protein regulatory complex. The apparent Km value for hexosephosphate activity was affected by the level of phosphate in the uptake environment. 相似文献
5.
6.
The Escherichia coli uhp region encodes the transport system that mediates the uptake of a number of sugar phosphates as well as the regulatory components that are responsible for induction of this transport system by external glucose 6-phosphate. Four uhp genes have been identified by analysis of the complementation behavior and polypeptide coding capacity of plasmids carrying subcloned regions or transposon insertions. The nucleotide sequence of a 6.5-kilobase segment that contains the 3' end of the ilvBN operon and the entire uhp region was determined. Four open reading frames were identified in the locations expected for the various uhp genes; all were oriented in the same direction, counterclockwise relative to the genetic map. The properties of the polypeptides predicted from the nucleotide sequence were consistent with their observed features. The 196-amino-acid UhpA polypeptide has the composition characteristic of a soluble protein and bears homology to the DNA-binding regions of many regulatory activators and repressors. The 518-amino-acid UhpB and the 199-amino-acid UhpC regulatory proteins contain substantial segments of hydrophobic character. Similarly, the 463-amino-acid UhpT transporter is a hydrophobic protein with numerous potential transmembrane segments. The UhpC regulatory protein has substantial sequence homology to part of UhpT, suggesting that this regulatory protein might have evolved by duplication of the gene for the transporter and that its role in transmembrane signaling may involve sugar-phosphate-binding sites and transmembrane orientations similar to those of the transport protein. 相似文献
7.
8.
9.
Effects of deletion and insertion mutations in the ilvM gene of Escherichia coli. 总被引:2,自引:3,他引:2
下载免费PDF全文

A plasmid was constructed that carried the ilvG and ilvM genes and the associated promoter and leader regions derived from the K-12 strain of Escherichia coli. The ilvG gene contained a + 1 frameshift mutation that enabled the plasmid to specify acetohydroxyacid synthase II. The plasmid was modified by deletions in the terminus of and within the ilvM gene and by insertions into the ilvM gene. The effects of these modifications on the phenotypes of the plasmids were examined in a host strain that lacked all three isozymes of acetohydroxyacid synthase. Most of the ilvM mutant plasmids so obtained permitted growth of the host strain in the absence of isoleucine but not in the absence of valine. Growth in the presence of valine, however, was very slow. No significant acetohydroxyacid synthase activity could be detected even when the cells were grown in a valine-supplemented minimal medium. It thus appears that, at most, only a very low level of acetohydroxyacid synthase activity occurred with ilvG in the absence of ilvM and that low activity was more effective for acetohydroxy butyrate formation than for acetolactate formation. The ilvM gene product could be formed under the control of the lac promoter in the presence of a plasmid that carried an in-frame gene fusion between lacZ and the downstream portion of ilvG. Extracts from the host strain that contained such an IlvG(-)-IlvM+ plasmid could be combined with extracts from cells that contained one of the IlvG+-IlvM- plasmids to yield acetohydroxyacid synthase activity. Thus, the ilvM and ilvG genes could be expressed independently of each other. 相似文献
10.
11.
G W Dietz 《Canadian journal of microbiology》1978,24(3):203-208
Glucosamine 6-phosphate was found to be a substrate but not an inducer for the hexose phosphate transport system of Escherichia coli. Wild-type cells grow very poorly on glucosamine 6-phosphate. A mutant was selected that will grow rapidly on glucosamine 6-phosphate because it contains a constitutive hexose phosphate transport system. 相似文献
12.
Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli. 总被引:1,自引:5,他引:1
下载免费PDF全文

The hexose phosphate transport system transported glycerol 3-phosphate and its analogs 3,4-dihydroxybutyl-1-phosphonate, glyceraldehyde 3-phosphate, and 3-hydroxy-4-oxobutyl-1-phosphonate. 相似文献
13.
By cloning a 3.6-kb EcoRI fragment of the Escherichia coli chromosome with pBR322 we located more precisely recF relative to dnaN. By deletion mapping we localized functional recF to a 1.65-kb region of the cloned fragment and allowed rough mapping of the C terminus of dnaN. Cloned recF+, separated from functional flanking genes dnaN and gyrB, complemented chromosomal recF mutations presumably by coding for a cytodiffusible product. The protein encoded by dnaN was observed as a band on a polyacrylamide gel from minicells. Identification of a recF protein was not made. 相似文献
14.
15.
Michael Hecker Andreas Schroeter Friedrich Mach 《Molecular & general genetics : MGG》1983,190(2):355-357
Summary Synthesis of both chromosomal and plasmid (pBR322) DNA was measured in E. coli strains differing in their relA allele (relA+: CP78; relA: CP79). It was found that upon limitation of a required amino acid or after valine treatment to trigger a stringent response synthesis of pBR322 DNA was stimulated only in the relaxed strain and was inhibited in its stringent counterpart. The results suggest that replication of plasmid DNA is negatively controlled by the relA+ allele. 相似文献
16.
We assessed the effect of insertions of the kanamycin resistance transposon Tn5 in the lac operon of Escherichia coli on the expression of distal genes lacY and lacA (melibiose fermentation at 41 degrees C and thiogalactoside transacetylase synthesis, respectively). Every insertion mutation tested (41 in lacZ and 23 in lacY) was strongly polar. However, approximately one-third of the insertion mutants expressed distal genes at low levels due to a promoter associated with Tn5. To localize this promoter, we (i) reversed the orientation of Tn5 at several sites and (ii) replaced wild-type Tn5 with several substitution derivatives which lack Tn5's central region. Neither alteration changed the expression of distal genes. Thus, in contrast to transposons IS2 and TnA. Tn5's ability to turn on distal gene expression is not due to a promoter in its central region and therefore is not dependent on the overall orientation of Tn5 in the operon. Our results suggest that the promoter is within 186 base pairs of the ends of Tn5. It is possible that the promoter is detected in only a fraction of insertions because it overlaps Tn5-target sequence boundary. 相似文献
17.
Genetic control of L-alpha-glycerophosphate system in Escherichia coli 总被引:51,自引:0,他引:51
18.
19.
Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. 总被引:40,自引:111,他引:40
下载免费PDF全文

A mutation of a cloned gene that has been made by introducing a transposon or some other selectable genetic determinant can be crossed into the gene's original replicon by linearizing the cloned DNA and transforming a recB recC sbcB mutant. A number of applications of this method are described with genes of either chromosomal or plasmid origin. 相似文献
20.
Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli 总被引:12,自引:0,他引:12
C M Joyce D M Fujii H S Laks C M Hughes N D Grindley 《Journal of molecular biology》1985,186(2):283-293
DNA polymerase I of Escherichia coli provides an excellent model for the study of template-directed enzymatic synthesis of DNA because it is a single subunit enzyme, it can be obtained in large quantities and the three-dimensional structure of the polymerizing domain (the Klenow fragment) has recently been determined (Ollis et al., 1985). One approach to assigning functions to particular portions of the structure is to correlate the altered enzymatic behavior of mutant forms of DNA polymerase I with the change in the primary sequence of the protein. Towards this end we have developed a rapid procedure for mapping any polA mutation to a region no larger than 300 base-pairs within the polA gene. Two series of polA deletion mutants with defined end-points were constructed in vitro and cloned into bacteriophage lambda. These phages can then be used to map precisely E. coli polA mutants. Twelve polA- alleles have been mapped in this way and for nine of them the nature of the mutational change has been determined by DNA sequence analysis. Two of the mutations, polA5 and polA6, which affect the enzyme-DNA interaction, provide evidence for the location of the DNA binding region on the polymerase three-dimensional structure. 相似文献