首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection on pathogens tends to favour the evolution of growth and reproductive rates and a concomitant level of virulence (damage done to the host) that maximizes pathogen fitness. Yet, because hosts often pose varying selective environments to pathogens, one level of virulence may not be appropriate for all host types. Indeed, if a level of virulence confers high fitness to the pathogen in one host phenotype but low fitness in another host phenotype, alternative virulence strategies may be maintained in the pathogen population. Such strategies can occur either as polymorphism, where different strains of pathogen evolve specialized virulence strategies in different host phenotypes or as polyphenism, where pathogens facultatively express alternative virulence strategies depending on host phenotype. Polymorphism potentially leads to specialist pathogens capable of infecting a limited range of host phenotypes, whereas polyphenism potentially leads to generalist pathogens capable of infecting a wider range of hosts. Evaluating how variation among hosts affects virulence evolution can provide insight into pathogen diversity and is critical in determining how host pathogen interactions affect the phenotypic evolution of both hosts and pathogens.  相似文献   

2.
Graham Bell 《Genetica》1993,91(1-3):21-34
This paper discusses a novel theory of senescence: the community of pathogens within each host individual evolves during the life-time of the host, and in doing so progressively reduces host vigour. I marshal evidence that asymptomatic host individuals maintain persistent populations of viral pathogens; that these pathogens replicate; that they are often extremely variable; that selection within hosts causes the evolution of pathogens better able to exploit the host; that selection is host-specific; and that such evolving infections cause appreciable and progressive deterioration. Experimental approaches to testing the theory are discussed.  相似文献   

3.
Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.  相似文献   

4.
方仁东  雷桂花  彭远义 《微生物学报》2017,57(10):1421-1433
炎症小体(Inflammasome)是细胞质中多种蛋白组装成的复合物,炎症小体的激活能活化半胱天冬酶-1(caspase-1),进而引起系列促炎细胞因子的成熟与分泌和诱导细胞焦亡。当病原体感染时,炎症小体的激活在宿主天然免疫应答中起重要作用。大量研究表明,多数情况下炎症小体对宿主起保护作用,仅少数情况下保护作用不明显或表现出有利于病原体生存的一面。在长期进化中,病原体也发展出逃避宿主炎症小体作用的策略。病原体可直接抑制炎症小体的激活或减弱炎症小体的作用。本文从病原体感染宿主中炎症小体的作用及病原体对宿主炎性症小体的逃避机制两方面对二者相互作用的最新研究进展进行综述。  相似文献   

5.
盘基网柄菌作为致病菌宿主模型的研究主要有:筛选致病菌株及相应突变菌株毒性;鉴别对致病菌易感性和抗性的突变细胞宿主;宿主细胞的有效标记、已完成的基因组计划以及宿主细胞与致病菌间信号转导通路的相互作用;这些都表明盘基网柄菌是致病机制研究的理想宿主模型。  相似文献   

6.
Gastrointestinal (GI) pathogens enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), and related mouse pathogen Citrobacter rodentium, are referred to as attaching and effacing (AE) pathogens for the lesions they form upon colonisation of the host epithelium. EPEC, EHEC, and C. rodentium are well known to use a type III secretion system to intimately attach to intestinal cells and secrete bacterial effectors to manipulate host cell processes. Less well known is the ability of AE pathogens to overcome significant physiological and microbial barriers and target specific gut niches for initial colonisation of the host epithelium. This review considers recent work highlighting the biogeography of the GI tract as it applies to colonisation by enteric pathogens, including environmental barriers to enteric infection, signals sensed by AE pathogens for navigation of the GI tract, and the tools AE pathogens use to respond to the changing host environment.  相似文献   

7.
In natural systems, host species are often co-infected by multiple pathogen species, and recent work has suggested that many pathogens can infect a wide range of host species. An important question therefore is what determines the host range of a pathogen and the community of pathogens found within a given host species. Using primates as a model, we show that infectious diseases are more often shared between species that are closely related and inhabit the same geographical region. We find that host relatedness is the best overall predictor of whether two host species share the same pathogens. A higher frequency of pathogen host shifts between close relatives or inheritance of pathogens from a common ancestor may explain this result. For viruses, geographical overlap among neighbouring primate hosts is more important in determining host range. We suggest this is because rapid evolution within viral lineages allows host jumps across larger evolutionary distances. We also show that the phylogenetic pattern of pathogen sharing with humans is the same as that between wild primates. For humans, this means we share a higher proportion of pathogens with the great apes, including chimpanzees and gorillas, because these species are our closest relatives.  相似文献   

8.
Microbial access to host nutrients is a fundamental aspect of infectious diseases. Pathogens face complex dynamic nutritional host microenvironments that change with increasing inflammation and local hypoxia. Since the host can actively limit microbial access to nutrient supply, pathogens have evolved various metabolic adaptations to successfully exploit available host nutrients for proliferation. Recent studies have unraveled an emerging paradigm that we propose to designate as ‘nutritional virulence’. This paradigm is based on specific virulence mechanisms that target major host biosynthetic and degradation pathways (proteasomes, autophagy and lysosomes) or nutrient‐rich sources, such as glutathione, to enhance host supply of limiting nutrients, such as cysteine. Although Cys is the most limiting cellular amino acid, it is a metabolically favourable source of carbon and energy for various pathogens that are auxotrophic for Cys but utilize idiosyncratic nutritional virulence strategies to generate a gratuitous supply of host Cys. Therefore, proliferation of some intracellular pathogens is restricted by a host nutritional rheostat regulated by certain limiting amino acids, and pathogens have evolved idiosyncratic strategies to short circuit the host nutritional rheostat. Deciphering mechanisms of microbial ‘nutritional virulence’ and metabolism in vivo will facilitate identification of novel microbialand host targets for treatment and prevention of infectious diseases. Host–pathogen synchronization of amino acid auxotrophy indicates that this nutritional synchronization has been a major driving force in the evolution of many intracellular bacterial pathogens.  相似文献   

9.
两种或两种以上的病原物同时侵染昆虫寄主时,病原物之间的相互作用表现为偏利、偏害、中性及竞争等类型,寄生群体的病症可呈多种形式.根据单种病菌的重叠侵染原理,建立了多种病原物混合侵染时以温度、病原接种量、虫龄及湿度为因子的昆虫流行病模型.由模型可计算寄生群体中不同病原物的致病比率,及寄主群体的总发病率,给出了模型的参数求解算法,以及病原物相互作用类型的判定准则.这类模型可用于多种病原物混合侵染的昆虫流行病预测,也可作为多种病原物混合施用防治害虫的最优化模型.  相似文献   

10.
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.  相似文献   

11.
Many biotrophic fungal and oomycete pathogens share a common infection process involving the formation of haustoria, which penetrate host cell walls and form a close association with plant membranes. Recent studies have identified a class of pathogenicity effector proteins from these pathogens that is transferred into host cells from haustoria during infection. This insight stemmed from the identification of avirulence (Avr) proteins from these pathogens that are recognized by intracellular host resistance (R) proteins. Oomycete effectors contain a conserved translocation motif that directs their uptake into host cells independently of the pathogen, and is shared with the human malaria pathogen. Genome sequence information indicates that oomycetes may express several hundred such host-translocated effectors. Elucidating the transport mechanism of fungal and oomycete effectors and their roles in disease offers new opportunities to understand how these pathogens are able to manipulate host cells to establish a parasitic relationship and to develop new disease-control measures.  相似文献   

12.
Intracellular pathogens can manipulate host cellular pathways to create specialized organelles. These pathogen-modified vacuoles permit the survival and replication of bacterial and protozoan microorganisms inside of the host cell. By establishing an atypical organelle, intracellular pathogens present unique challenges to the host immune system. To understand pathogenesis, it is important to not only investigate how these organisms create unique subcellular compartments, but to also determine how mammalian immune systems have evolved to detect and respond to pathogens sequestered in specialized vacuoles. Recent studies have identified genes in the respiratory pathogen Legionella pneumophila that are essential for establishing a unique endoplasmic reticulum-derived organelle inside of mammalian macrophages, making this pathogen an attractive model system for investigations on host immune responses that are specific for bacteria that establish vacuoles disconnected from the endocytic pathway. This review will focus on the host immune response to Legionella and highlight areas of Legionella research that should help elucidate host strategies to combat infections by intracellular pathogens.  相似文献   

13.
The route of initial entry influences how host cells respond to intracellular pathogens. Recent studies have demonstrated that a wide variety of pathogens target lipid microdomains in host cell membranes, known as lipid rafts, to enter host cells as an infectious strategy.  相似文献   

14.
The endoplasmic reticulum (ER) has unique properties that are exploited by microbial pathogens. Exotoxins secreted by bacteria take advantage of the host transport pathways that deliver proteins from the Golgi to the ER. Transport to the ER is necessary for the unfolding and translocation of these toxins into the cytosol where their host targets reside. Intracellular pathogens subvert host vesicle transport to create ER-like vacuoles that support their intracellular replication. Investigations on how bacterial pathogens can use the ER during host infection are providing important details on transport pathways involving this specialized organelle.  相似文献   

15.
Novel pathogens continue to emerge in human, domestic animal, wildlife and plant populations, yet the population dynamics of this kind of biological invasion remain poorly understood. Here, we consider the epidemiological and evolutionary processes underlying the initial introduction and subsequent spread of a pathogen in a new host population, with special reference to pathogens that originate by jumping from one host species to another. We conclude that, although pathogen emergence is inherently unpredictable, emerging pathogens tend to share some common traits, and that directly transmitted RNA viruses might be the pathogens that are most likely to jump between host species.  相似文献   

16.
Manipulation of rab GTPase function by intracellular bacterial pathogens.   总被引:1,自引:0,他引:1  
Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection.  相似文献   

17.
人类时常暴露于充满各种致病菌的环境中,这些致病菌与人体细胞或组织之间存在多种相互作用。在相互作用的过程中,细菌通过调节自身毒性、侵袭性等致病性,以适应宿主环境并生存下来,同样,宿主细胞也会通过调动自身的免疫系统来抵抗致病菌的入侵。然而,大多数研究者主要聚焦于致病菌sRNA (small RNA, sRNA)自身生理功能的研究,致病菌与宿主相互作用的认识仍然处于起步阶段。因此,如何使用高灵敏性、高分辨率的方法研究致病菌与宿主之间的相互作用成为当前研究面临的一大难题。本文综合国内外相关研究,概述了目前研究致病菌与宿主相互作用常用的技术方法及实验流程,提高对其机制原理的理解,为致病菌sRNA-宿主靶标的相关研究提供技术参考。  相似文献   

18.
The link between bacteria and host chromatin remodeling is an emerging topic. The exciting recent discoveries on bacterial impact on host epigenetics, as discussed in this Review, highlight yet another strategy used by bacterial pathogens to interfere with key cellular processes. The study of how pathogens provoke host chromatin changes will also provide new insights into host epigenetic regulation mechanisms.  相似文献   

19.
We augmented existing computationally predicted and experimentally determined interactions with evolutionarily conserved interactions between proteins of the malaria parasite, P. falciparum, and the human host. In a validation step, we found that conserved interacting host-parasite protein pairs were specifically expressed in host tissues where both the parasite and host proteins are known to be active. We compared host-parasite interactions with experimentally verified interactions between human host proteins and a very different pathogen, HIV-1. Both pathogens were found to use their protein repertoire in a combinatorial manner, providing a broad connection to host cellular processes. Specifically, the two biologically distinct pathogens predominately target central proteins to take control of a human host cell, effectively reaching into diversified cellular host cellular functions. Interacting signaling pathways and a small set of regulatory and signaling proteins were prime targets of both pathogens, suggesting remarkably similar patterns of host-pathogen interactions despite the vast biological differences of both pathogens. Such an identification of shared molecular strategies by the virus HIV-1 and the eukaryotic intracellular pathogen P. falciparum may allow us to illuminate new avenues of disease intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号