首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamics of binding of unfolded polypeptides to the chaperone SecB was investigated in vitro by isothermal titration calorimetry and fluorescence spectroscopy. The substrates were reduced and carboxamidomethylated forms of RNase A, BPTI, and alpha-lactalbumin. SecB binds both fully unfolded RNase A and BPTI as well as compact, partially folded disulfide intermediates of alpha-lactalbumin, which have 40-60% of native secondary structure. The heat capacity changes observed on binding the reduced and carboxamidomethylated forms of alpha-lactalbumin, BPTI, and RNase A were found to be -0.10, -0.29, and -0.41 kcal mol(-1) K(-1), respectively, and suggest that between 7 and 29 residues are buried upon substrate binding to SecB. In all cases, binding occurs with a stoichiometry of one polypeptide chain per monomer of SecB. There is no evidence for two separate types of binding sites for positively charged and hydrophobic ligands. Spectroscopic and proteolysis protection studies of the binding of SecB to poly-L-Lys show that binding of highly positively charged peptide ligands to negatively charged SecB leads to charge neutralization and subsequent aggregation of SecB. The data are consistent with a model where SecB binds substrate molecules at an exposed hydrophobic cleft. SecB aggregation in the absence of substrate is prevented by electrostatic repulsion between negatively charged SecB tetramers.  相似文献   

2.
Serine proteinases and their protein inhibitors belong to one of the most comprehensively studied models of protein-protein interactions. It is well established that the narrow trypsin specificity is caused by the presence of a negatively charged aspartate at the specificity pocket. X-ray crystallography as well as association measurements revealed, surprisingly, that BPTI with glutamatic acid as the primary binding (P1) residue was able to bind to trypsin. Previous free energy calculations showed that there was a substantially unfavorable binding free energy associated with accommodation of ionized P1 Glu at the S1-site of trypsin. In this study, the binding of P1 Glu to trypsin has been systematically investigated in terms of the protonation states of P1 Glu and Asp189, the orientation of Gln192, as well as the possible presence of counterions using the linear interaction energy (LIE) approach and the free energy perturbation (FEP) method. Twenty-four conceivable binding arrangements were evaluated and quantitative agreement with experiments is obtained when the P1 Glu binds in its protonated from. The results suggest that P1 Glu is one of the variants of BPTI that inhibit trypsin strongest at low pH, contrary to the specificity profile of trypsin, suggesting a new regulation mechanism of trypsin-like enzymes.  相似文献   

3.
A qualitative evaluation of electrostatic features of the substrate binding region of seven isoenzymes of trypsin has been performed by using the continuum electrostatic model for the solution of the Poisson-Boltzmann equation. The sources of the electrostatic differences among the trypsins have been sought by comparative calculations on selective charges: all charges, conserved charges, partial charges, unique cold trypsin charges, and a number of charge mutations. As expected, most of the negative potential at the S(1) region of all trypsins is generated from Asp(189), but the potential varies significantly among the seven trypsin isoenzymes. The three cold active enzymes included in this study possess a notably lower potential at and around the S(1)-pocket compared with the warm active counterparts; this finding may be the main contribution to the increased binding affinity. The source of the differences are nonconserved charged residues outside the specificity pocket, producing electric fields at the S(1)-pocket that are different in both sign and magnitude. The surface charges of the mesophilic trypsins generally induce the S(1) pocket positively, whereas surface charges of the cold trypsins produce a negative electric field of this region. Calculations on mutants, where charged amino acids were substituted between the trypsins, showed that mutations in Loop2 (residues 221B and 224) and residue 175, in particular, were responsible for the low potential of the cold enzymes.  相似文献   

4.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (K d, 16.5 nM) and BPTI (K d, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (K d, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (K d, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (K d, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (K d, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (K d, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   

5.
The type II transmembrane multidomain serine proteinase MT-SP1/matriptase is highly expressed in many human cancer-derived cell lines and has been implicated in extracellular matrix re-modeling, tumor growth, and metastasis. We have expressed the catalytic domain of MT-SP1 and solved the crystal structures of complexes with benzamidine at 1.3 A and bovine pancreatic trypsin inhibitor at 2.9 A. MT-SP1 exhibits a trypsin-like serine proteinase fold, featuring a unique nine-residue 60-insertion loop that influences interactions with protein substrates. The structure discloses a trypsin-like S1 pocket, a small hydrophobic S2 subsite, and an open negatively charged S4 cavity that favors the binding of basic P3/P4 residues. A complementary charge pattern on the surface opposite the active site cleft suggests a distinct docking of the preceding low density lipoprotein receptor class A domain. The benzamidine crystals possess a freely accessible active site and are hence well suited for soaking small molecules, facilitating the improvement of inhibitors. The crystal structure of the MT-SP1 complex with bovine pancreatic trypsin inhibitor serves as a model for hepatocyte growth factor activator inhibitor 1, the physiological inhibitor of MT-SP1, and suggests determinants for the substrate specificity.  相似文献   

6.
PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumour progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P(2)' position. We find that bulky and charged residues strongly disfavour binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P(1) and P(2)' residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K(i) of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.  相似文献   

7.
The benzamidine moiety, a well-known arginine mimetic, has been introduced in a variety of ligands, including peptidomimetic inhibitors of trypsin-like serine proteases. According to their primary substrate specificity, the benzamidine residue interacts with the negatively charged aspartate at the bottom of the S1 pocket of such enzymes. Six series of benzamidine derivatives (173) were synthesized and evaluated as inhibitors of two prototype serine proteases, that is, bovine trypsin and human thrombin. As a further target, human matriptase-2, a recently discovered type II transmembrane serine protease, was investigated. Matriptase-2 represents an important regulatory protease in iron homeostasis by down-regulation of the hepcidin expression. Compounds 173 were designed to contain a fixed sulfamoyl benzamidine moiety as arginine mimetic and a linker-connected additional substructure, such as a tert-butyl ester, carboxylate or second benzamidine functionality. A systematic mapping approach was performed with these inhibitors to scan the active site of the three target proteases. In particular, bisbenzamidines, able to interact with both the S1 and S3/S4 binding sites, showed notable affinity. In branched bisbenzamidines 6673 containing a third hydrophobic residue, opposite effects of the stereochemistry on trypsin and thrombin inhibition were observed.  相似文献   

8.
Guvench O  Price DJ  Brooks CL 《Proteins》2005,58(2):407-417
The trypsin-like serine proteases comprise a structurally similar family of proteins with a wide diversity of biological functions. Members of this family play roles in digestion, hemostasis, immune responses, and cancer metastasis. Bovine trypsin is an archetypical member of this family that has been extensively characterized both functionally and structurally, and that preferentially hydrolyzes Arg/Lys-Xaa peptide bonds. We have used molecular dynamics (MD) simulations to study bovine trypsin complexed with the two noncovalent small-molecule ligands, benzamidine and tranylcypromine, that have the same hydrogen-bond donating moieties as Arg and Lys side-chains, respectively. Multiple (10) simulations ranging from 1 ns to 2.2 ns, with explicit water molecules and periodic boundary conditions, were performed. The simulations reveal that the trypsin binding pocket residues are relatively rigid regardless of whether there is no ligand, a high-affinity ligand (benzamidine), or a low-affinity ligand (tranylcypromine). The thermal average of the conformations sampled by benzamidine bound to trypsin is planar and consistent with the planar internal geometry of the benzamidine crystallographic model coordinates. However, the most probable bound benzamidine conformations are +/-25 degrees out of plane, implying that the observed X-ray electron density represents an average of densities from two mirror symmetric, nonplanar conformations. Solvated benzamidine has free energy minima at +/-45 degrees , and the induction of a more planar geometry upon binding is associated with approximately 1 kcal/mol of intramolecular strain. Tranylcypromine's hydrogen-bonding pattern in the MD differs substantially from that inferred from the X-ray electron density. Early in simulations of this system, tranylcypromine adopts an alternative binding conformation, changing from the crystallographic conformation, with a direct hydrogen bond between its amino moiety and the backbone oxygen of Gly219, to one having a bridging water molecule. This result is consistently seen with the CHARMM22, Amber, or OPLS-AA force fields. The trypsin-tranylcypromine hydrogen-bonding pattern observed in the simulations also occurs as the crystallographic binding mode of the Lys15 side-chain of bovine pancreatic trypsin inhibitor bound to trypsin. In this latter cocrystal, a bridging crystallographic water does reside between the side-chain's amino group and the trypsin Gly219 backbone oxygen. Furthermore, the trypsin-tranylcypromine simulations sample two different stable noncrystallographic binding poses. These data suggest that some of the electron density ascribed to tranylcypromine in the X-ray model is rather due to a bound water molecule, and that multiple tranylcypromine binding conformations (crystallographic disorder) may be the cause of ambiguous electron density. The combined trypsin-benzamidine and trypsin- tranylcypromine results highlight the ability of simulations to augment protein-ligand complex structural data by deconvoluting the effects of thermal and structural averaging, and by finding energetically optimal ligand and bound water positions for weakly bound ligands.  相似文献   

9.
Alkaline phosphatases (APs) are non-specific phosphohydrolases that are widely used in molecular biology and diagnostics. We describe the structure of the cold active alkaline phosphatase from the Antarctic bacterium TAB5 (TAP). The fold and the active site geometry are conserved with the other AP structures, where the monomer has a large central beta-sheet enclosed by alpha-helices. The dimer interface of TAP is relatively small, and only a single loop from each monomer replaces the typical crown domain. The structure also has typical cold-adapted features; lack of disulfide bridges, low number of salt-bridges, and a loose dimer interface that completely lacks charged interactions. The dimer interface is more hydrophobic than that of the Escherichia coli AP and the interactions have tendency to pair with backbone atoms, which we propose to result from the cold adaptation of TAP. The structure contains two additional magnesium ions outside of the active site, which we believe to be involved in substrate binding as well as contributing to the local stability. The M4 site stabilises an interaction that anchors the substrate-coordinating R148. The M5 metal-binding site is in a region that stabilises metal coordination in the active site. In other APs the M5 binding area is supported by extensive salt-bridge stabilisation, as well as positively charged patches around the active site. We propose that these charges, and the TAP M5 binding, influence the release of the product phosphate and thus might influence the rate-determining step of the enzyme.  相似文献   

10.
The binding of P1 variants of bovine pancreatic trypsin inhibitor (BPTI) to trypsin has been investigated by means of molecular dynamics simulations. The specific interaction formed between the amino acid at the primary binding (P1) position of the binding loop of BPTI and the specificity pocket of trypsin was estimated by use of the linear interaction energy (LIE) method. Calculations for 13 of the naturally occurring amino acids at the P1 position were carried out, and the results obtained were found to correlate well with the experimental binding free energies. The LIE calculations rank the majority of the 13 variants correctly according to the experimental association energies and the mean error between calculated and experimental binding free energies is only 0.38 kcal/mole, excluding the Glu and Asp variants, which are associated with some uncertainties regarding protonation and the possible presence of counter-ions. The three-dimensional structures of the complex with three of the P1 variants (Asn, Tyr, and Ser) included in this study have not at present been solved by any experimental techniques and, therefore, were modeled on the basis of experimental data from P1 variants of similar size. Average structures were calculated from the MD simulations, from which specific interactions explaining the broad variation in association energies were identified. The present study also shows that explicit treatment of the complex water-mediated hydrogen bonding network at the protein-protein interface is of crucial importance for obtaining reliable binding free energies. The successful reproduction of relative binding energies shows that this type of methodology can be very useful as an aid in rational design and redesign of biologically active macromolecules.  相似文献   

11.
It is well established that the dynamic motion of proteins plays an important functional role, and that the adaptation of a protein molecule to its environment requires optimization of internal non-covalent interactions and protein-solvent interactions. Serine proteinases in general, and trypsin in particular has been used as a model system in exploring possible structural features for cold adaptation. In this study, a 500 p.s. and a 1200 p.s. molecular dynamics (MD) simulation at 300 K of both anionic salmon trypsin and cationic bovine trypsin are analyzed in terms of molecular flexibility, internal non-covalent interactions and protein-solvent interactions. The present MD simulations do not indicate any increased flexibility of the cold adapted enzyme on an overall basis. However, the apparent higher flexibility and deformability of the active site of anionic salmon trypsin may lower the activation energy for ligand binding and for catalysis, and might be a reason for the increased binding affinity and catalytic efficiency compared to cationic bovine trypsin.  相似文献   

12.
Crystal structures of P1 Gly, Val, Leu and Phe bovine pancreatic trypsin inhibitor (BPTI) variants in complex with two serine proteinases, bovine trypsin and chymotrypsin, have been determined. The association constants for the four mutants with the two enzymes show that the enlargement of the volume of the P1 residue is accompanied by an increase of the binding energy, which is more pronounced for bovine chymotrypsin. Since the conformation of the P1 side-chains in the two S1 pockets is very similar, we suggest that the difference in DeltaG values between the enzymes must arise from the more polar environment of the S1 site of trypsin. This results mainly from the substitutions of Met192 and Ser189 observed in chymotrypsin with Gln192 and Asp189 present in trypsin. The more polar interior of the S1 site of trypsin is reflected by a much higher order of the solvent network in the empty pocket of the enzyme, as is observed in the complexes of the two enzymes with the P1 Gly BPTI variant. The more optimal binding of the large hydrophobic P1 residues by chymotrypsin is also reflected by shrinkage of the S1 pocket upon the accommodation of the cognate residues of this enzyme. Conversely, the S1 pocket of trypsin expands upon binding of such side-chains, possibly to avoid interaction with the polar residues of the walls. Further differentiation between the two enzymes is achieved by small differences in the shape of the S1 sites, resulting in an unequal steric hindrance of some of the side-chains, as observed for the gamma-branched P1 Leu variant of BPTI, which is much more favored by bovine chymotrypsin than trypsin. Analysis of the discrimination of beta-branched residues by trypsin and chymotrypsin is based on the complexes with the P1 Val BPTI variant. Steric repulsion of the P1 Val residue by the walls of the S1 pocket of both enzymes prevents the P1 Val side-chain from adopting the most optimal chi1 value.  相似文献   

13.
Residue determinants and sequence analysis of cold-adapted trypsins   总被引:3,自引:0,他引:3  
The digestive enzyme trypsin is among the most extensively studied proteins, and its structure has been reported from a large number of organisms. This article focuses on the trypsins from vertebrates adapted to life at low temperatures. Cold-adapted organisms seem to have compensated for the reduced reaction rates at low temperatures by evolving more active and less temperature-stable enzymes. We have analyzed 27 trypsin sequences from a variety of organisms to find unique attributes for the cold-adapted trypsins, comparing trypsins from salmon, Antarctic fish, cod, and pufferfish to other vertebrate trypsins. Both the "cold" and the "warm" active trypsins have about 50 amino acids that are unique and conserved within each class. The main unique features of the cold-adapted trypsins attributable to low-temperature adaptation seem to be (1) reduced hydrophobicity and packing density of the core, mainly because of a lower (Ile + Leu)/(Ile + Leu + Val) ratio, (2) reduced stability of the C-terminal, (3) lack of one warm trypsin conserved proline residue and one proline tyrosine stacking, (4) difference in charge and flexibility of loops extending the binding pocket, and (5) different conformation of the "autolysis" loop that is likely to be involved in substrate binding. Received: January 14, 1999 / Accepted: March 31, 1999  相似文献   

14.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein-ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

15.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein–ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

16.
The oligopeptide-binding protein OppA provides a useful model system for studying the physical chemistry underlying noncovalent interactions since it binds a variety of readily synthesized ligands. We have studied the binding of eight closely related tripeptides of the type Lysine-X-Lysine, where X is an abnormal amino acid, by isothermal titration calorimetry (ITC) and X-ray crystallography. The tripeptides fall into three series of ligands, which have been designed to examine the effects of small changes to the central side chain. Three ligands have a primary amine as the second side chain, two have a straight alkane chain, and three have ring systems. The results have revealed a definite preference for the binding of hydrophobic residues over the positively charged side chains, the latter binding only weakly due to unfavorable enthalpic effects. Within the series of positively charged groups, a point of lowest affinity has been identified and this is proposed to arise from unfavorable electrostatic interactions in the pocket, including the disruption of a key salt bridge. Marked entropy-enthalpy compensation is found across the series, and some of the difficulties in designing tightly binding ligands have been highlighted.  相似文献   

17.
Summary Formation and dissociation of the benzamidine: -trypsin adduct is accompanied by reversible spectral changes in the ultraviolet region (between 230 and 300 nm). The pH-independent difference extinction coefficient of the adduct (benzamidine: -trypsin complex minus the free proteinase) is 1.75 mM–1 cm–1 at 248 nm. This signal can be used in studies of inhibitor and substrate binding by rapid kinetic techniques. Therefore, following the spectral changes associated with the displacement of benzamidine from the primary specificity subsite, the kinetics of the -trypsin: BPTI complex formation were investigated between pH 2.9 and 7.6 (I = 0.1 M) at 21 ± 0.5 °C. Under all the experimental conditions the -trypsin: BPTI complex formation, examined by benzamidine displacement experiments, may be described in terms of a simple competition event. On the other hand, the very same reaction followed by displacement of another spectroscopic probe, proflavine, appears to involve the ternary proflavine: -trypsin:BPTI adduct (7). The difference between the kinetic processes of -trypsin: BPTI complex formation, observed by using benzamidine and proflavine as reaction indicators, suggests that the two dye molecules bind at non-coincident regions of the proteinase active center. The advantages in using benzamidine as a sensitive probe specific for the S1 subsite of the recognition center of trypsin-like proteinases, as compared to proflavine, are emphasized.Abbreviations BPTI bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor) - pNGB p-nitrophenyl-p-guanidinobenzoate - NaDodSO4 sodium dodecyl sulfate  相似文献   

18.
The bovine chymotrypsin-bovine pancreatic trypsin inhibitor (BPTI) interaction belongs to extensively studied models of protein-protein recognition. The accommodation of the inhibitor P1 residue in the S1 binding site of the enzyme forms the hot spot of this interaction. Mutations introduced at the P1 position of BPTI result in a more than five orders of magnitude difference of the association constant values with the protease. To elucidate the structural aspects of the discrimination between different P1 residues, crystal structures of five bovine chymotrypsin-P1 BPTI variant complexes have been determined at pH 7.8 to a resolution below 2 A. The set includes polar (Thr), ionizable (Glu, His), medium-sized aliphatic (Met) and large aromatic (Trp) P1 residues and complements our earlier studies of the interaction of different P1 side-chains with the S1 pocket of chymotrypsin. The structures have been compared to the complexes of proteases with similar and dissimilar P1 preferences, including Streptomyces griseus proteases B and E, human neutrophil elastase, crab collagenase, bovine trypsin and human thrombin. The S1 sites of these enzymes share a common general shape of significant rigidity. Large and branched P1 residues adapt in their complexes similar conformations regardless of the polarity and size differences between their S1 pockets. Conversely, long and flexible residues such as P1 Met are present in the disordered form and display a conformational diversity despite similar inhibitory properties with respect to most enzymes studied. Thus, the S1 specificity profiles of the serine proteases appear to result from the precise complementarity of the P1-S1 interface and minor conformational adjustments occurring upon the inhibitor binding.  相似文献   

19.
In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI''s interaction with a partly-folded protein, and the first to analyze this folding catalyst''s changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility.  相似文献   

20.
Fitness effects of mutations may generally depend on temperature that influences all rate-limiting biophysical and biochemical processes. Earlier studies suggested that high temperatures may increase the availability of beneficial mutations (‘more beneficial mutations’), or allow beneficial mutations to show stronger fitness effects (‘stronger beneficial mutation effects’). The ‘more beneficial mutations’ scenario would inevitably be associated with increased proportion of conditionally beneficial mutations at higher temperatures. This in turn predicts that populations in warm environments show faster evolutionary adaptation but suffer fitness loss when faced with cold conditions, and those evolving in cold environments become thermal-niche generalists (‘hotter is narrower’). Under the ‘stronger beneficial mutation effects’ scenario, populations evolving in warm environments would show faster adaptation without fitness costs in cold environments, leading to a ‘hotter is (universally) better’ pattern in thermal niche adaptation. We tested predictions of the two competing hypotheses using an experimental evolution study in which populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, evolved for 2400 generations at three experimental temperatures. Results of reciprocal transplant experiments with our P. fluorescens populations were largely consistent with the ‘hotter is narrower’ prediction. Results from the E. coli populations clearly suggested stronger beneficial mutation effects at higher assay temperatures, but failed to detect faster adaptation in populations evolving in warmer experimental environments (presumably because of limitation in the supply of genetic variation). Our results suggest that the influence of temperature on mutational effects may provide insight into the patterns of thermal niche adaptation and population diversification across thermal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号