首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
B Martin  N Sicard 《Mutation research》1984,132(3-4):87-93
Plasmid DNA, isolated from mutants of E. coli that are deficient in both uracil-DNA glycosylase and deoxyuridine triphosphatase, contains significant amounts of uracil. This can be removed in vitro by the action of uracil-DNA glycosylase, creating apyrimidinic sites. We have used depyrimidinated plasmid DNA isolated in this way to test the ability of E. coli extracts to preferentially incorporate labeled deoxythymidine triphosphate. No pyrimidine-insertase activity was found in extracts of bacteria that were deficient in exonuclease III. The question of the existence of such an activity in E. coli cells is discussed.  相似文献   

2.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

3.
Significant amounts of uracil were found in the deoxyribonucleic acids (DNAs) of Escherichia coli mutants deficient in both uracil-DNA glycosylase (ung) and deoxyuridine 5'-triphosphate nucleotidohydrolase (dut) activities, whereas little uracil was found in the DNAs of wild-type cells and cells deficient in only one of these two activities. The amounts of uracil found in the DNAs of dut ung mutants were directly related to the growth temperature of the cultures, apparently because the deoxyuridine 5'-triphosphate nucleotidohydrolase synthesized by dut mutants was temperature sensitive. The dut mutant used failed to grow exponentially, became filamentous at temperatures above 25 degrees C, and exhibited a hyperrec phenotype; however, the ung mutation suppressed all of these effects. Although the dut ung mutants grew exponentially at all temperatures, their growth rates were always slower than the growth rate of the wild type. Since pool size measurements indicated that both deoxyuridine triphosphate and deoxythymidine triphosphate pools were markedly elevated in dut mutants, the reduced growth rate of dut ung cells apparently was due to the actual presence of uracil in the DNA, rather than to a deficiency of deoxyuridine triphosphate and deoxyribosylthymine triphosphate for DNA synthesis. The presence of uracil in E. coli donor DNA also markedly reduced the recombination frequency when the recipient cells were ung+, indicating that DNA repair commenced before the entering DNA could be replicated.  相似文献   

4.
Apurinic/apyrimidinic (AP) sites in cellular DNA are considered to be both cytotoxic and mutagenic, and can arise spontaneously or following exposure to DNA damaging agents. We have isolated cDNA clones which encode an endonuclease, designated HAP1 (human AP endonuclease 1), that catalyses the initial step in AP site repair in human cells. The predicted HAP1 protein has an Mr of 35,500 and shows striking sequence similarity (93% identity) to BAP 1, a bovine AP endonuclease enzyme. Significant sequence homology to two bacterial DNA repair enzymes, E. coli exonuclease III and S. pneumoniae ExoA proteins, and to Drosophila Rrp1 protein is also apparent. We have expressed the HAP1 cDNA in E. coli mutants lacking exonuclease III (xth), endonuclease IV (nfo), or both AP endonucleases. The HAP1 protein can substitute for exonuclease III, but not for endonuclease IV, in respect of some, but not all, DNA repair and mutagenesis functions. Moreover, a dut xth (ts) double mutant, which is nonviable at 42 degrees C due to an accumulation of unrepaired AP sites following excision of uracil from DNA, was rescued by expression of the HAP1 cDNA. These results indicate that AP endonucleases show remarkable conservation of both primary sequence and function. We would predict that the HAP1 protein is important in human cells for protection against the toxic and mutagenic effects of DNA damaging agents.  相似文献   

5.
Uracil-DNA glycosylase from rat liver mitochondria, an inner membrane protein, has been purified approximately 575,000-fold to apparent homogeneity. During purification two distinct activity peaks, designated form I and form II, were resolved by phosphocellulose chromatography. Form I constituted approximately 85% while form II was approximately 15% of the total activity; no interconversion between the forms was observed. The major form was purified as a basic protein with an isoelectric point of 10.3. This enzyme consists of a single polypeptide with an apparent Mr of 24,000 as determined by recovering glycosylase activity from a sodium dodecyl sulfate-polyacrylamide gel. A native Mr of 29,000 was determined by glycerol gradient sedimentation. The purified enzyme had no detectable exonuclease, apurinic/apyrimidinic endonuclease, DNA polymerase, or hydroxymethyluracil-DNA glycosylase activity. A 2-fold preference for single-stranded uracil-DNA over a duplex substrate was observed. The apparent Km for uracil residues in DNA was 1.1 microM, and the turnover number is about 1000 uracil residues released per minute. Both free uracil and apyrimidinic sites inhibited glycosylase activity with Ki values of approximately 600 microM and 1.2 microM, respectively. Other uracil analogues including 5-(hydroxymethyl)uracil, 5-fluorouracil, 5-aminouracil, 6-azauracil, and 2-thiouracil or analogues of apyrimidinic sites such as deoxyribose and deoxyribose 5'-phosphate did not inhibit activity. Both form I and form II had virtually identical kinetic properties, and the catalytic fingerprints (specificity for uracil residues located in a defined nucleotide sequence) obtained on a 152-nucleotide restriction fragment of M13mp2 uracil-DNA were almost identical. These properties differentiated the mitochondrial enzyme from that of the uracil-DNA glycosylase purified from nuclei of the same source.  相似文献   

6.
Two uracil-DNA glycosylase (ung) mutation selection procedures based upon the ability of uracil glycosylase to degrade the chromosomes of organisms containing uracil-DNA were devised to obtain a collection of well-defined ung alleles. In an enrichment procedure, lysogens were selected from Escherichia coli cultures infected with lambda pKanr phage containing uracil in their DNA. (These uracil-DNA phage were prepared by growth on host cells deficient in both dUTPase and uracil-DNA glycosylase.) The lysogenic Kanr population was enriched for uracil glycosylase-deficient mutants by a factor of 10(4). In a phage suicide selection procedure, lambda pung+ phage were unable to form plaques on dut ung cells containing uracil-DNA in their chromosomes, and all of the progeny were lambda pung-. Deletion, insertion (ung::Mu and ung::Tn10), nonsense, and missense mutants were isolated by using these procedures. Extracts of three insertion mutants contained no detectable enzyme activity. All of the other mutant isolates had less than 1% of the normal uracil glycosylase specific activity. The previously studied ung-1 allele, which was derived by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, produced about 0.02% of the normal amount of uracil glycosylase activity. No significant phenotypic differences between ung-1 and ung::Tn10 alleles were observed. Variations of the lysogen selection procedure may be helpful for isolating other DNA glycosylase mutations in E. coli and other organisms.  相似文献   

7.
H H el-Hajj  H Zhang    B Weiss 《Journal of bacteriology》1988,170(3):1069-1075
A chloramphenicol resistance gene was cloned into a plasmid-borne dut gene, producing an insertion mutation that was then transferred to the chromosome by allelic exchange. The mutation could not be acquired by haploid strains through substitutive recombination, even when two flanking markers were simultaneously transduced. The insertion was easily transferred, via generalized transduction, into the chromosomal dut region of strains harboring a lambda dut + transducing phage; however, the resulting dut mutant/lambda dut + merodiploid could not then be cured of the prophage. This apparent lethality of the mutation could not be explained by effects on adjacent genes; the dfp gene retained complementing activity, and a ttk insertion mutant was viable. The dut gene product, deoxyuridine triphosphatase, is known to reduce incorporation of uracil into DNA and to be required in the de novo synthesis of thymidylate. Therefore, an attempt was made to determine whether the dut insertion would be tolerated in strains carrying the following compensatory mutations: dcd (dCTP deaminase) and cdd (deoxycytidine deaminase), which should reduce dUTP formation; ung (uracil-DNA glycosylase), which should reduce fatally excessive excision repair; deoA (thymidine phosphorylase), which should enhance the utilization of exogenous thymidine; and sulA, which should reduce the lethal side effects of SOS regulon induction. These mutations, either alone or in various combinations, did not permit the survival of a haploid dut insertion mutant, suggesting that the dut gene product might have an essential function apart from its deoxyuridine triphosphatase activity.  相似文献   

8.
Uracil-DNA glycosylase in insects. Drosophila and the locust   总被引:3,自引:0,他引:3  
It has been reported that Drosophila lacks a uracil-DNA glycosylase but that a direct incising activity on uracil-containing DNA appeared developmentally only in third instar larvae. In contrast we have found by two independent assays, that uracil-DNA glycosylase exists in both Drosophila eggs as well as in third instar larvae. The first assay shows the liberation of [3H] uracil from a d(AT)n polymer randomly substituted with [3H]uracil by its synthesis in the presence of [3H] dUTP. The second fluorometric assay for uracil-DNA glycosylase depends on the unique topological properties of circular DNAs and has the advantage of detecting apyrimidinic/apurinic (AP) endonuclease activity as well. To test one other insect, locust eggs were also assayed for uracil-DNA glycosylase. The amount of uracil-DNA glycosylase correlated well with the amount of DNA in actively replicating cells.  相似文献   

9.
The incorporation of uracil into and excision from DNA were studied in vitro using lysates on cellophane discs made from Escherichia coli strains with defects in the enzymes dUTPase (dut) and uracil-DNA glycosylase (ung).Results with dut ung lysates indicate that dUTP is competitively incorporated with dTTP at the replication fork. Such incorporation is not due to DNA polymerase I. There is a mild discrimination (2.5-fold) against incorporation of dUTP versus dTTP. These data, together with in vivo uracil incorporation data (Tye et al., 1978) permit a rough estimate of the pool of dUTP in vivo (~0.5% of the dTTP pool).These in vitro data indicate that uracil-DNA glycosylase is the initial step in at least 90% of uracil excision events. However, in a strain defective in uracil-DNA glycosylase (ung-1), uracil-containing DNA is still more subject to single-strand scission than non-uracil-containing DNA, albeit at a rate at least tenfold less than in an ung+ strain.A number of qualitative statements may also be made about different steps in uracil incorporation and subsequent excision and repair events. When high levels of dUTP are added in vitro, a dut ung+ strain has a higher steady-state level of uracil in newly synthesized DNA than does an isogenic dut+ ung strain. Thus the dUTPase in these lysates has a higher capacity to be overloaded than does the excision system (i.e. uracil DNA glycosylase). However, the DNA sealing system (presumably DNA polymerase I and DNA ligase) apparently can handle all single-strand interruptions being introduced by uracil excision at the maximal rate, at least so that DNA synthesis can continue.  相似文献   

10.
The steady-state levels of uracil residues in DNA extracted from strains of Escherichia coli were measured and the influence of defects in the genes for uracil-DNA glycosylase (ung), double-strand uracil-DNA glycosylase (dug), and dUTP pyrophosphatase (dut) on uracil accumulation was determined. A sensitive method, called the Ung-ARP assay, was developed that utilized E. coli Ung, T4pdg, and the Aldehyde Reactive Probe reagent to label abasic sites resulting from uracil excision with biotin. The limit of detection was one uracil residue per million DNA nucleotides (U/10(6)nt). Uracil levels in the genomic DNA of E. coli JM105 (ung+ dug+) were at the limit of detection, as were those of an isogenic dug mutant, regardless of growth phase. Inactivation of ung in JM105 resulted in 31+/-2.6 U/10(6)nt during early log growth and 19+/-1.7 U/10(6)nt in saturated phase. An ung dug double mutant (CY11) accumulated 33+/-2.9 U/10(6)nt and 23+/-1.8U/10(6)nt during early log and saturated phase growth, respectively. When cultures of CY11 were supplemented with 20 ng/ml of 5-fluoro-2'-deoxyuridine, uracil levels in early log phase growth DNA rose to 125+/-1.7 U/10(6)nt. Deoxyuridine supplementation reduced the amount of uracil in CY11 DNA, but uridine did not. Levels of uracil in DNA extracted from CJ236 (dut-1 ung-1) were determined to be 3000-8000 U/10(6)nt as measured by the Ung-ARP assay, two-dimensional thin-layer chromatography of metabolically-labeled 32P DNA, and LC/MS of uracil and thymine deoxynucleosides. DNA sequencing revealed that the sole molecular defect in the CJ236 dUTP pyrophosphatase gene was a C-->T transition mutation that resulted in a Thr24Ile amino acid change.  相似文献   

11.
Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.   总被引:27,自引:14,他引:13       下载免费PDF全文
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.  相似文献   

12.
A mutant of phage T5 which is unable to induce thymidylate synthetase was isolated. T5 thy mutants synthesized less DNA than did wild-type T5, and the burst size of progeny phage was correspondingly reduced two- to threefold in thy+ Escherichia coli. No DNA or progeny phage were made in E. coli thy hosts grown in the absence of exogenous thymine. When the T5 thy mutation was recombined with a T5 dut mutation (unable to induce dUTPase), replication resulted in progeny which contained significant amounts of uracil in their DNA, and these phage failed to produce plaques unless the plating host was deficient in uracil-DNA glycosylase. T5 phage containing various amounts of uracil in their DNA were prepared and used to determine the effect of uracil on the induction of the early enzyme dTMP kinase. The presence of uracil in the parental DNA increased the rate of induction of this enzyme by about 2.5-fold. The T5 thy gene was mapped and is located near the T5 frd gene on the B region of the T5 genome.  相似文献   

13.
Cultivation of E. coli cells in the presence of 5-bromodeoxyuridine (BUdR) leads to formation of lesions in the cellular DNA which affect its secondary structure, as reflected by changes in temperature profiles. Such DNA contains single-stranded regions susceptible to endonuclease S1. One of the major sources of the BU-induced lesions appears to be dehalogenation of incorporated 5-bromouracil (BU) residues, with accompanying formation of uracil. The presence of uracil residues in such DNA was demonstrated directly by chromatography of hydrolyzates, and by the susceptibility of such residues to uracil-DNA glycosylase. The number of uracil residues was dependent on the extent of damage in the DNA, and decreased during the DNA repair that accompanied reactivation of bromouracil-inactivated cells. Dehalogenation of incorporated BU presumably results in formation of apyrimidinic sites by uracil-DNA glycosylase, and then single-strand nicks either by AP-endonuclease and/or dehalogenation. The findings are relevant to the mechanism of BU-induced mutagenesis.  相似文献   

14.
Gene-targeted knockout mice have been generated lacking the major uracil-DNA glycosylase, UNG. In contrast to ung- mutants of bacteria and yeast, such mice do not exhibit a greatly increased spontaneous mutation frequency. However, there is only slow removal of uracil from misincorporated dUMP in isolated ung-/- nuclei and an elevated steady-state level of uracil in DNA in dividing ung-/- cells. A backup uracil-excising activity in tissue extracts from ung null mice, with properties indistinguishable from the mammalian SMUG1 DNA glycosylase, may account for the repair of premutagenic U:G mispairs resulting from cytosine deamination in vivo. The nuclear UNG protein has apparently evolved a specialized role in mammalian cells counteracting U:A base pairs formed by use of dUTP during DNA synthesis.  相似文献   

15.
H H el-Hajj  L Wang    B Weiss 《Journal of bacteriology》1992,174(13):4450-4456
The dut gene of Escherichia coli encodes deoxyuridine triphosphatase, an enzyme that prevents the incorporation of dUTP into DNA and that is needed in the de novo biosynthesis of thymidylate. We produced a conditionally lethal dut(Ts) mutation and isolated a phenotypic revertant that had a mutation in an unknown gene tentatively designated dus (for dut suppressor). The dus mutation restored the ability of the dut mutant to grow at 42 degrees C without restoring its enzymatic activity or thymidylate independence. A strain was constructed bearing, in addition to these mutations, ones affecting the following genes and their corresponding products: ung, which produces uracil-DNA N-glycosylase, a repair enzyme that removes uracil from DNA; deoA, which produces thymidine (deoxyuridine) phosphorylase, which would degrade exogenous deoxyuridine; and thyA, which produces thymidylate synthase. When grown at 42 degrees C in minimal medium containing deoxyuridine, the multiple mutant displayed a 93 to 96% substitution of uracil for thymine in new DNA. Growth stopped after the cellular DNA had increased 1.6- to 1.9-fold and the cell mass had increased 1.7- to 2.7-fold, suggesting a general failure of macromolecular biosynthesis. DNA hybridization confirmed that the uracil-containing DNA was chromosomal and that new rounds of initiation must have occurred during its synthesis.  相似文献   

16.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.  相似文献   

17.
Cells contain low amounts of uracil in DNA which can be the result of dUTP misincorporation during replication or cytosine deamination. Elimination of uracil in the base excision repair pathway yields an abasic site, which is potentially mutagenic unless repaired. The Trypanosoma brucei genome presents a single uracil-DNA glycosylase responsible for removal of uracil from DNA. Here we establish that no excision activity is detected on U:G, U:A pairs or single-strand uracil-containing DNA in uracil-DNA glycosylase null mutant cell extracts, indicating the absence of back-up uracil excision activities. While procyclic forms can survive with moderate amounts of uracil in DNA, an analysis of the mutation rate and spectra in mutant cells revealed a hypermutator phenotype where the predominant events were GC to AT transitions and insertions. Defective elimination of uracil via the base excision repair pathway gives rise to hypersensitivity to antifolates and oxidative stress and an increased number of DNA strand breaks, suggesting the activation of alternative DNA repair pathways. Finally, we show that uracil-DNA glycosylase defective cells exhibit reduced infectivity in vivo demonstrating that efficient uracil elimination is important for survival within the mammalian host.  相似文献   

18.
Summary The in vivo excision repair functions of Escherichia coli exonuclease III and 3-methyladenine DNA glycosylase I, and bacteriophage T4 pyrimidine dimer-DNA glycosylase were investigated. Following exposure of bacteriophage T4 or lambda to methyl methanesulfonate or ultraviolet irradiation, survival was determined by plating on E. coli have various genetic backgrounds. Although exonuclease III was shown to participate in base excision repair initiated by 3-methyladenine DNA glcosylase I, it had no detectable role in base excision repair initiated by the T4 pyrimidine dimer-DNA glycosylase. Despite its 3 apurinic/apyrimidinic endonuclease activity in vitro, T4 pyrimidine dimer-DNA glycosylase, even in large quantities, did not complement mutants defective in exonuclease III in the repair of apurinic sites generated by 3-methyladenine DNA glycosylase I in vivo.  相似文献   

19.
S Boiteux  J Laval 《Biochemistry》1982,21(26):6746-6751
Heat treatment of poly(deoxycytidylic acid)-[poly(dC)] induces the formation of dUMP residues, which code for dAMP when replicated by Escherichia coli DNA polymerases I and III. The specificity of dUMP coding properties is indicated by the quantitative relation between the dAMP incorporated and the frequency of dUMP residues in the heat-treated poly(dC). The dAMP incorporation is prevented by preincubation of uracil containing poly(dC) with uracil-DNA glycosylase. The excision of uracil by uracil-DNA glycosylase leads to the formation of apyrimidinic sites (AP sites), which are barely replicated in vitro under physiological conditions. However, the alteration of E. coli DNA polymerase I fidelity of replication by Mn2+ greatly stimulates the replication of AP sites. There is a preferential incorporation of dAMP, as compared to dTMP, opposite the AP sites. The dAMP incorporation is prevented by preincubation of poly(dC) containing AP sites with Micrococcus luteus AP endonuclease B. The results show a close association between DNA repair by base excision and the prevention of mutagenic processes in vitro. Furthermore, since the alteration of DNA polymerase fidelity allows some replication of the noncoding DNA lesion (AP site), this could imply a role in SOS-induced mutagenesis in vivo.  相似文献   

20.
This paper describes the use of methoxyamine to study the enzymatic reactions catalyzed by uracil-DNA glycosylase and by AP (apurinic/apyrimidinic) endodeoxyribonuclease isolated from mammalian cells. [14C]Methoxyamine permits one to follow the formation of AP sites in a uracil-containing polydeoxyribonucleotide incubated with calf thymus uracil-DNA glycosylase. The number of methoxyamine-reacted AP sites is equal to that of uracil released. Methoxyamine has no effect on the uracil-DNA glycosylase activity and may be added together with the enzyme in order to block the AP sites and prevent the degradation of the polynucleotide by the AP endonucleases that may be present in a crude preparation. Addition of methoxyamine to AP sites prevents not only the enzymatic hydrolysis of the adjacent phosphodiester bond but also the degradation of the polynucleotide by NaOH. This protective effect disappears after methoxyamine is removed by acetaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号